Files
llm-automation-docs-and-rem…/templates/07_monitoring_alerting.md
LLM Automation System 1ba5ce851d Initial commit: LLM Automation Docs & Remediation Engine v2.0
Features:
- Automated datacenter documentation generation
- MCP integration for device connectivity
- Auto-remediation engine with safety checks
- Multi-factor reliability scoring (0-100%)
- Human feedback learning loop
- Pattern recognition and continuous improvement
- Agentic chat support with AI
- API for ticket resolution
- Frontend React with Material-UI
- CI/CD pipelines (GitLab + Gitea)
- Docker & Kubernetes deployment
- Complete documentation and guides

v2.0 Highlights:
- Auto-remediation with write operations (disabled by default)
- Reliability calculator with 4-factor scoring
- Human feedback system for continuous learning
- Pattern-based progressive automation
- Approval workflow for critical actions
- Full audit trail and rollback capability
2025-10-17 23:47:28 +00:00

1.5 KiB

07 - Monitoring e Alerting

Ultimo Aggiornamento: [DATA_AGGIORNAMENTO]
Versione Documento: [VERSIONE]
Responsabile: [NOME_RESPONSABILE]


1. Monitoring Platform

1.1 Sistema Principale

  • Soluzione: [ZABBIX/PROMETHEUS/NAGIOS/DATADOG]
  • Version: [VERSION]
  • Monitored Devices: [N]
  • Metrics Collected: [N]/sec
  • Data Retention: [DAYS] giorni

2. Monitored Systems

2.1 System Status

Hostname Type Status Uptime Last Check Issues Acknowledged
[HOST] [SERVER/NETWORK/APP] [OK/WARNING/CRITICAL] [DAYS] [TIME] [N] [SI/NO]

3. Alerting

3.1 Alert Configuration

Alert Name Severity Trigger Recipients Escalation Active
[ALERT] [CRITICAL/WARNING/INFO] [CONDITION] [CONTACTS] [MINUTES] [SI/NO]

3.2 Alert Statistics

Period Critical High Medium False Positives MTTR (min)
Last 7d [N] [N] [N] [N] [N]
Last 30d [N] [N] [N] [N] [N]

4. Performance Dashboards

4.1 Available Dashboards

  • Infrastructure Overview
  • Network Performance
  • Application Performance
  • Security Events
  • Capacity Planning

Token Utilizzati: [CONTEGGIO_APPROSSIMATIVO]
Prossimo Aggiornamento Previsto: [DATA]