first commit
Some checks failed
Build and Deploy / build (push) Failing after 1m34s

This commit is contained in:
2025-11-23 03:24:27 +01:00
commit cc5b8b32bb
6193 changed files with 832271 additions and 0 deletions

26
node_modules/fraction.js/examples/angles.js generated vendored Normal file
View File

@@ -0,0 +1,26 @@
/*
Fraction.js v5.0.0 10/1/2024
https://raw.org/article/rational-numbers-in-javascript/
Copyright (c) 2024, Robert Eisele (https://raw.org/)
Licensed under the MIT license.
*/
// This example generates a list of angles with human readable radians
var Fraction = require('fraction.js');
var tab = [];
for (var d = 1; d <= 360; d++) {
var pi = Fraction(2, 360).mul(d);
var tau = Fraction(1, 360).mul(d);
if (pi.d <= 6n && pi.d != 5n)
tab.push([
d,
pi.toFraction() + "pi",
tau.toFraction() + "tau"]);
}
console.table(tab);

54
node_modules/fraction.js/examples/approx.js generated vendored Normal file
View File

@@ -0,0 +1,54 @@
/*
Fraction.js v5.0.0 10/1/2024
https://raw.org/article/rational-numbers-in-javascript/
Copyright (c) 2024, Robert Eisele (https://raw.org/)
Licensed under the MIT license.
*/
const Fraction = require('fraction.js');
// Another rational approximation, not using Farey Sequences but Binary Search using the mediant
function approximate(p, precision) {
var num1 = Math.floor(p);
var den1 = 1;
var num2 = num1 + 1;
var den2 = 1;
if (p !== num1) {
while (den1 <= precision && den2 <= precision) {
var m = (num1 + num2) / (den1 + den2);
if (p === m) {
if (den1 + den2 <= precision) {
den1 += den2;
num1 += num2;
den2 = precision + 1;
} else if (den1 > den2) {
den2 = precision + 1;
} else {
den1 = precision + 1;
}
break;
} else if (p < m) {
num2 += num1;
den2 += den1;
} else {
num1 += num2;
den1 += den2;
}
}
}
if (den1 > precision) {
den1 = den2;
num1 = num2;
}
return new Fraction(num1, den1);
}

24
node_modules/fraction.js/examples/egyptian.js generated vendored Normal file
View File

@@ -0,0 +1,24 @@
/*
Fraction.js v5.0.0 10/1/2024
https://raw.org/article/rational-numbers-in-javascript/
Copyright (c) 2024, Robert Eisele (https://raw.org/)
Licensed under the MIT license.
*/
const Fraction = require('fraction.js');
// Based on http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fractions/egyptian.html
function egyptian(a, b) {
var res = [];
do {
var t = Math.ceil(b / a);
var x = new Fraction(a, b).sub(1, t);
res.push(t);
a = Number(x.n);
b = Number(x.d);
} while (a !== 0n);
return res;
}
console.log("1 / " + egyptian(521, 1050).join(" + 1 / "));

111
node_modules/fraction.js/examples/hesse-convergence.js generated vendored Normal file
View File

@@ -0,0 +1,111 @@
/*
Fraction.js v5.0.0 10/1/2024
https://raw.org/article/rational-numbers-in-javascript/
Copyright (c) 2024, Robert Eisele (https://raw.org/)
Licensed under the MIT license.
*/
const Fraction = require('fraction.js');
/*
We have the polynom f(x) = 1/3x_1^2 + x_2^2 + x_1 * x_2 + 3
The gradient of f(x):
grad(x) = | x_1^2+x_2 |
| 2x_2+x_1 |
And thus the Hesse-Matrix H:
| 2x_1 1 |
| 1 2 |
The inverse Hesse-Matrix H^-1 is
| -2 / (1-4x_1) 1 / (1 - 4x_1) |
| 1 / (1 - 4x_1) -2x_1 / (1 - 4x_1) |
We now want to find lim ->oo x[n], with the starting element of (3 2)^T
*/
// Get the Hesse Matrix
function H(x) {
var z = Fraction(1).sub(Fraction(4).mul(x[0]));
return [
Fraction(-2).div(z),
Fraction(1).div(z),
Fraction(1).div(z),
Fraction(-2).mul(x[0]).div(z),
];
}
// Get the gradient of f(x)
function grad(x) {
return [
Fraction(x[0]).mul(x[0]).add(x[1]),
Fraction(2).mul(x[1]).add(x[0])
];
}
// A simple matrix multiplication helper
function matrMult(m, v) {
return [
Fraction(m[0]).mul(v[0]).add(Fraction(m[1]).mul(v[1])),
Fraction(m[2]).mul(v[0]).add(Fraction(m[3]).mul(v[1]))
];
}
// A simple vector subtraction helper
function vecSub(a, b) {
return [
Fraction(a[0]).sub(b[0]),
Fraction(a[1]).sub(b[1])
];
}
// Main function, gets a vector and the actual index
function run(V, j) {
var t = H(V);
//console.log("H(X)");
for (var i in t) {
// console.log(t[i].toFraction());
}
var s = grad(V);
//console.log("vf(X)");
for (var i in s) {
// console.log(s[i].toFraction());
}
//console.log("multiplication");
var r = matrMult(t, s);
for (var i in r) {
// console.log(r[i].toFraction());
}
var R = (vecSub(V, r));
console.log("X" + j);
console.log(R[0].toFraction(), "= " + R[0].valueOf());
console.log(R[1].toFraction(), "= " + R[1].valueOf());
console.log("\n");
return R;
}
// Set the starting vector
var v = [3, 2];
for (var i = 0; i < 15; i++) {
v = run(v, i);
}

67
node_modules/fraction.js/examples/integrate.js generated vendored Normal file
View File

@@ -0,0 +1,67 @@
/*
Fraction.js v5.0.0 10/1/2024
https://raw.org/article/rational-numbers-in-javascript/
Copyright (c) 2024, Robert Eisele (https://raw.org/)
Licensed under the MIT license.
*/
const Fraction = require('fraction.js');
// NOTE: This is a nice example, but a stable version of this is served with Polynomial.js:
// https://github.com/rawify/Polynomial.js
function integrate(poly) {
poly = poly.replace(/\s+/g, "");
var regex = /(\([+-]?[0-9/]+\)|[+-]?[0-9/]+)x(?:\^(\([+-]?[0-9/]+\)|[+-]?[0-9]+))?/g;
var arr;
var res = {};
while (null !== (arr = regex.exec(poly))) {
var a = (arr[1] || "1").replace("(", "").replace(")", "").split("/");
var b = (arr[2] || "1").replace("(", "").replace(")", "").split("/");
var exp = new Fraction(b).add(1);
var key = "" + exp;
if (res[key] !== undefined) {
res[key] = { x: new Fraction(a).div(exp).add(res[key].x), e: exp };
} else {
res[key] = { x: new Fraction(a).div(exp), e: exp };
}
}
var str = "";
var c = 0;
for (var i in res) {
if (res[i].x.s !== -1n && c > 0) {
str += "+";
} else if (res[i].x.s === -1n) {
str += "-";
}
if (res[i].x.n !== res[i].x.d) {
if (res[i].x.d !== 1n) {
str += res[i].x.n + "/" + res[i].x.d;
} else {
str += res[i].x.n;
}
}
str += "x";
if (res[i].e.n !== res[i].e.d) {
str += "^";
if (res[i].e.d !== 1n) {
str += "(" + res[i].e.n + "/" + res[i].e.d + ")";
} else {
str += res[i].e.n;
}
}
c++;
}
return str;
}
var poly = "-2/3x^3-2x^2+3x+8x^3-1/3x^(4/8)";
console.log("f(x): " + poly);
console.log("F(x): " + integrate(poly));

24
node_modules/fraction.js/examples/ratio-chain.js generated vendored Normal file
View File

@@ -0,0 +1,24 @@
/*
Given the ratio a : b : c = 2 : 3 : 4
What is c, given a = 40?
A general ratio chain is a_1 : a_2 : a_3 : ... : a_n = r_1 : r2 : r_3 : ... : r_n.
Now each term can be expressed as a_i = r_i * x for some unknown proportional constant x.
If a_k is known it follows that x = a_k / r_k. Substituting x into the first equation yields
a_i = r_i / r_k * a_k.
Given an array r and a given value a_k, the following function calculates all a_i:
*/
function calculateRatios(r, a_k, k) {
const x = Fraction(a_k).div(r[k]);
return r.map(r_i => x.mul(r_i));
}
// Example usage:
const r = [2, 3, 4]; // Ratio array representing a : b : c = 2 : 3 : 4
const a_k = 40; // Given value of a (corresponding to r[0])
const k = 0; // Index of the known value (a corresponds to r[0])
const result = calculateRatios(r, a_k, k);
console.log(result); // Output: [40, 60, 80]

29
node_modules/fraction.js/examples/rational-pow.js generated vendored Normal file
View File

@@ -0,0 +1,29 @@
/*
Fraction.js v5.0.0 10/1/2024
https://raw.org/article/rational-numbers-in-javascript/
Copyright (c) 2024, Robert Eisele (https://raw.org/)
Licensed under the MIT license.
*/
const Fraction = require('fraction.js');
// Calculates (a/b)^(c/d) if result is rational
// Derivation: https://raw.org/book/analysis/rational-numbers/
function root(a, b, c, d) {
// Initial estimate
let x = Fraction(100 * (Math.floor(Math.pow(a / b, c / d)) || 1), 100);
const abc = Fraction(a, b).pow(c);
for (let i = 0; i < 30; i++) {
const n = abc.mul(x.pow(1 - d)).sub(x).div(d).add(x)
if (x.n === n.n && x.d === n.d) {
return n;
}
x = n;
}
return null;
}
root(18, 2, 1, 2); // 3/1

16
node_modules/fraction.js/examples/tape-measure.js generated vendored Normal file
View File

@@ -0,0 +1,16 @@
/*
Fraction.js v5.0.0 10/1/2024
https://raw.org/article/rational-numbers-in-javascript/
Copyright (c) 2024, Robert Eisele (https://raw.org/)
Licensed under the MIT license.
*/
const Fraction = require('fraction.js');
function closestTapeMeasure(frac) {
// A tape measure is usually divided in parts of 1/16
return Fraction(frac).roundTo("1/16");
}
console.log(closestTapeMeasure("1/3")); // 5/16

35
node_modules/fraction.js/examples/toFraction.js generated vendored Normal file
View File

@@ -0,0 +1,35 @@
/*
Fraction.js v5.0.0 10/1/2024
https://raw.org/article/rational-numbers-in-javascript/
Copyright (c) 2024, Robert Eisele (https://raw.org/)
Licensed under the MIT license.
*/
const Fraction = require('fraction.js');
function toFraction(frac) {
var map = {
'1:4': "¼",
'1:2': "½",
'3:4': "¾",
'1:7': "⅐",
'1:9': "⅑",
'1:10': "⅒",
'1:3': "⅓",
'2:3': "⅔",
'1:5': "⅕",
'2:5': "⅖",
'3:5': "⅗",
'4:5': "⅘",
'1:6': "⅙",
'5:6': "⅚",
'1:8': "⅛",
'3:8': "⅜",
'5:8': "⅝",
'7:8': "⅞"
};
return map[frac.n + ":" + frac.d] || frac.toFraction(false);
}
console.log(toFraction(Fraction(0.25))); // ¼

42
node_modules/fraction.js/examples/valueOfPi.js generated vendored Normal file
View File

@@ -0,0 +1,42 @@
/*
Fraction.js v5.0.0 10/1/2024
https://raw.org/article/rational-numbers-in-javascript/
Copyright (c) 2024, Robert Eisele (https://raw.org/)
Licensed under the MIT license.
*/
var Fraction = require("fraction.js")
function valueOfPi(val) {
let minLen = Infinity, minI = 0, min = null;
const choose = [val, val * Math.PI, val / Math.PI];
for (let i = 0; i < choose.length; i++) {
let el = new Fraction(choose[i]).simplify(1e-13);
let len = Math.log(Number(el.n) + 1) + Math.log(Number(el.d));
if (len < minLen) {
minLen = len;
minI = i;
min = el;
}
}
if (minI == 2) {
return min.toFraction().replace(/(\d+)(\/\d+)?/, (_, p, q) =>
(p == "1" ? "" : p) + "π" + (q || ""));
}
if (minI == 1) {
return min.toFraction().replace(/(\d+)(\/\d+)?/, (_, p, q) =>
p + (!q ? "/π" : "/(" + q.slice(1) + "π)"));
}
return min.toFraction();
}
console.log(valueOfPi(-3)); // -3
console.log(valueOfPi(4 * Math.PI)); // 4π
console.log(valueOfPi(3.14)); // 157/50
console.log(valueOfPi(3 / 2 * Math.PI)); // 3π/2
console.log(valueOfPi(Math.PI / 2)); // π/2
console.log(valueOfPi(-1 / (2 * Math.PI))); // -1/(2π)