feat: Add back button to return to index.html in both modes
All checks were successful
Build and Deploy / build (push) Successful in 32s
All checks were successful
Build and Deploy / build (push) Successful in 32s
This commit is contained in:
@@ -104,9 +104,17 @@
|
||||
>
|
||||
<div class="container mx-auto p-4 max-w-7xl">
|
||||
<!-- Header -->
|
||||
<div
|
||||
class="glass rounded-2xl p-8 mb-6 animate-slide-in text-center"
|
||||
<div class="glass rounded-2xl p-8 mb-6 animate-slide-in">
|
||||
<div class="flex items-center justify-between mb-4">
|
||||
<a
|
||||
href="index.html"
|
||||
class="bg-gradient-to-r from-gray-500 to-gray-600 text-white font-semibold py-2 px-4 rounded-lg hover:from-gray-600 hover:to-gray-700 transition-all flex items-center gap-2 shadow-lg"
|
||||
>
|
||||
<i class="fas fa-arrow-left"></i>
|
||||
<span>Torna al Menu</span>
|
||||
</a>
|
||||
</div>
|
||||
<div class="text-center">
|
||||
<h1
|
||||
class="text-4xl font-bold text-gray-800 flex items-center justify-center gap-3"
|
||||
>
|
||||
@@ -114,10 +122,11 @@
|
||||
Calcolatore Prezzi Software Pro
|
||||
</h1>
|
||||
<p class="text-gray-600 mt-2">
|
||||
Sistema professionale per preventivi sviluppo software in
|
||||
Italia
|
||||
Sistema professionale per preventivi sviluppo software
|
||||
in Italia
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Notifiche Toast -->
|
||||
<div
|
||||
|
||||
180
shop-mode.html
180
shop-mode.html
@@ -82,9 +82,17 @@
|
||||
>
|
||||
<div class="container mx-auto p-4 max-w-7xl">
|
||||
<!-- Header -->
|
||||
<div
|
||||
class="glass rounded-2xl p-8 mb-6 animate-slide-in text-center"
|
||||
<div class="glass rounded-2xl p-8 mb-6 animate-slide-in">
|
||||
<div class="flex items-center justify-between mb-4">
|
||||
<a
|
||||
href="index.html"
|
||||
class="bg-gradient-to-r from-gray-500 to-gray-600 text-white font-semibold py-2 px-4 rounded-lg hover:from-gray-600 hover:to-gray-700 transition-all flex items-center gap-2 shadow-lg"
|
||||
>
|
||||
<i class="fas fa-arrow-left"></i>
|
||||
<span>Torna al Menu</span>
|
||||
</a>
|
||||
</div>
|
||||
<div class="text-center">
|
||||
<h1
|
||||
class="text-4xl font-bold text-gray-800 flex items-center justify-center gap-3"
|
||||
>
|
||||
@@ -95,6 +103,7 @@
|
||||
Sistema di preventivi basato su articoli e quantità
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Notifiche Toast -->
|
||||
<div
|
||||
@@ -170,17 +179,32 @@
|
||||
</div>
|
||||
<div x-show="logoColor" class="mt-3">
|
||||
<div class="flex items-center gap-2 mb-2">
|
||||
<span class="text-xs font-semibold text-gray-700">Colore Brand (media palette):</span>
|
||||
<div :style="'background-color: ' + logoColor" class="w-10 h-10 rounded-lg border-2 border-gray-300 shadow-sm"></div>
|
||||
<span class="text-xs font-mono font-bold" x-text="logoColor"></span>
|
||||
<span class="text-xs font-semibold text-gray-700"
|
||||
>Colore Brand (media palette):</span
|
||||
>
|
||||
<div
|
||||
:style="'background-color: ' + logoColor"
|
||||
class="w-10 h-10 rounded-lg border-2 border-gray-300 shadow-sm"
|
||||
></div>
|
||||
<span
|
||||
class="text-xs font-mono font-bold"
|
||||
x-text="logoColor"
|
||||
></span>
|
||||
</div>
|
||||
<div x-show="colorPalette.length > 0" class="mt-2">
|
||||
<span class="text-xs text-gray-600">Palette estratta:</span>
|
||||
<span class="text-xs text-gray-600"
|
||||
>Palette estratta:</span
|
||||
>
|
||||
<div class="flex gap-1 mt-1 flex-wrap">
|
||||
<template x-for="color in colorPalette" :key="color">
|
||||
<div :style="'background-color: ' + color"
|
||||
<template
|
||||
x-for="color in colorPalette"
|
||||
:key="color"
|
||||
>
|
||||
<div
|
||||
:style="'background-color: ' + color"
|
||||
:title="color"
|
||||
class="w-8 h-8 rounded border border-gray-300 shadow-sm cursor-pointer hover:scale-110 transition-transform"></div>
|
||||
class="w-8 h-8 rounded border border-gray-300 shadow-sm cursor-pointer hover:scale-110 transition-transform"
|
||||
></div>
|
||||
</template>
|
||||
</div>
|
||||
</div>
|
||||
@@ -727,7 +751,6 @@
|
||||
reader.readAsDataURL(file);
|
||||
},
|
||||
|
||||
|
||||
extractDominantColor(imageData) {
|
||||
const img = new Image();
|
||||
img.onload = () => {
|
||||
@@ -738,7 +761,12 @@ extractDominantColor(imageData) {
|
||||
ctx.drawImage(img, 0, 0);
|
||||
|
||||
try {
|
||||
const imgData = ctx.getImageData(0, 0, canvas.width, canvas.height);
|
||||
const imgData = ctx.getImageData(
|
||||
0,
|
||||
0,
|
||||
canvas.width,
|
||||
canvas.height,
|
||||
);
|
||||
const data = imgData.data;
|
||||
|
||||
// Step 1: Collect all valid colors
|
||||
@@ -761,7 +789,8 @@ extractDominantColor(imageData) {
|
||||
// Calculate saturation to skip grays
|
||||
const max = Math.max(r, g, b);
|
||||
const min = Math.min(r, g, b);
|
||||
const saturation = max === 0 ? 0 : (max - min) / max;
|
||||
const saturation =
|
||||
max === 0 ? 0 : (max - min) / max;
|
||||
if (saturation < 0.2) continue; // Skip grays
|
||||
|
||||
colors.push({ r, g, b });
|
||||
@@ -770,40 +799,87 @@ extractDominantColor(imageData) {
|
||||
if (colors.length === 0) {
|
||||
this.logoColor = "#10b981";
|
||||
this.colorPalette = [];
|
||||
console.log("No valid colors found, using fallback");
|
||||
console.log(
|
||||
"No valid colors found, using fallback",
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// Step 2: K-means clustering to extract palette (5-7 colors)
|
||||
const numClusters = Math.min(6, Math.max(3, Math.floor(colors.length / 50)));
|
||||
const palette = this.kMeansClustering(colors, numClusters);
|
||||
const numClusters = Math.min(
|
||||
6,
|
||||
Math.max(3, Math.floor(colors.length / 50)),
|
||||
);
|
||||
const palette = this.kMeansClustering(
|
||||
colors,
|
||||
numClusters,
|
||||
);
|
||||
|
||||
// Step 3: Filter palette colors by lightness
|
||||
const filteredPalette = palette.filter(color => {
|
||||
const max = Math.max(color.r, color.g, color.b);
|
||||
const min = Math.min(color.r, color.g, color.b);
|
||||
const filteredPalette = palette.filter(
|
||||
(color) => {
|
||||
const max = Math.max(
|
||||
color.r,
|
||||
color.g,
|
||||
color.b,
|
||||
);
|
||||
const min = Math.min(
|
||||
color.r,
|
||||
color.g,
|
||||
color.b,
|
||||
);
|
||||
const l = (max + min) / 2 / 255;
|
||||
return l > 0.25 && l < 0.80; // Keep mid-range lightness
|
||||
});
|
||||
return l > 0.25 && l < 0.8; // Keep mid-range lightness
|
||||
},
|
||||
);
|
||||
|
||||
if (filteredPalette.length === 0) {
|
||||
this.logoColor = "#10b981";
|
||||
this.colorPalette = [];
|
||||
console.log("No suitable colors in palette, using fallback");
|
||||
console.log(
|
||||
"No suitable colors in palette, using fallback",
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// Step 4: Calculate average color from palette
|
||||
const avgR = Math.round(filteredPalette.reduce((sum, c) => sum + c.r, 0) / filteredPalette.length);
|
||||
const avgG = Math.round(filteredPalette.reduce((sum, c) => sum + c.g, 0) / filteredPalette.length);
|
||||
const avgB = Math.round(filteredPalette.reduce((sum, c) => sum + c.b, 0) / filteredPalette.length);
|
||||
const avgR = Math.round(
|
||||
filteredPalette.reduce(
|
||||
(sum, c) => sum + c.r,
|
||||
0,
|
||||
) / filteredPalette.length,
|
||||
);
|
||||
const avgG = Math.round(
|
||||
filteredPalette.reduce(
|
||||
(sum, c) => sum + c.g,
|
||||
0,
|
||||
) / filteredPalette.length,
|
||||
);
|
||||
const avgB = Math.round(
|
||||
filteredPalette.reduce(
|
||||
(sum, c) => sum + c.b,
|
||||
0,
|
||||
) / filteredPalette.length,
|
||||
);
|
||||
|
||||
// Store results
|
||||
this.logoColor = this.rgbToHex(avgR, avgG, avgB);
|
||||
this.colorPalette = filteredPalette.map(c => this.rgbToHex(c.r, c.g, c.b));
|
||||
this.logoColor = this.rgbToHex(
|
||||
avgR,
|
||||
avgG,
|
||||
avgB,
|
||||
);
|
||||
this.colorPalette = filteredPalette.map((c) =>
|
||||
this.rgbToHex(c.r, c.g, c.b),
|
||||
);
|
||||
|
||||
console.log("Extracted palette:", this.colorPalette);
|
||||
console.log("Average brand color:", this.logoColor);
|
||||
console.log(
|
||||
"Extracted palette:",
|
||||
this.colorPalette,
|
||||
);
|
||||
console.log(
|
||||
"Average brand color:",
|
||||
this.logoColor,
|
||||
);
|
||||
} catch (err) {
|
||||
console.error("Error extracting color:", err);
|
||||
this.logoColor = "#10b981";
|
||||
@@ -816,17 +892,23 @@ extractDominantColor(imageData) {
|
||||
kMeansClustering(colors, k) {
|
||||
// Initialize centroids randomly
|
||||
let centroids = [];
|
||||
const shuffled = [...colors].sort(() => Math.random() - 0.5);
|
||||
const shuffled = [...colors].sort(
|
||||
() => Math.random() - 0.5,
|
||||
);
|
||||
for (let i = 0; i < k; i++) {
|
||||
centroids.push({ ...shuffled[i % shuffled.length] });
|
||||
centroids.push({
|
||||
...shuffled[i % shuffled.length],
|
||||
});
|
||||
}
|
||||
|
||||
// K-means iterations
|
||||
for (let iter = 0; iter < 10; iter++) {
|
||||
// Assign colors to nearest centroid
|
||||
const clusters = Array(k).fill(null).map(() => []);
|
||||
const clusters = Array(k)
|
||||
.fill(null)
|
||||
.map(() => []);
|
||||
|
||||
colors.forEach(color => {
|
||||
colors.forEach((color) => {
|
||||
let minDist = Infinity;
|
||||
let closestIdx = 0;
|
||||
|
||||
@@ -834,7 +916,7 @@ kMeansClustering(colors, k) {
|
||||
const dist = Math.sqrt(
|
||||
Math.pow(color.r - centroid.r, 2) +
|
||||
Math.pow(color.g - centroid.g, 2) +
|
||||
Math.pow(color.b - centroid.b, 2)
|
||||
Math.pow(color.b - centroid.b, 2),
|
||||
);
|
||||
if (dist < minDist) {
|
||||
minDist = dist;
|
||||
@@ -846,21 +928,31 @@ kMeansClustering(colors, k) {
|
||||
});
|
||||
|
||||
// Update centroids
|
||||
const newCentroids = clusters.map(cluster => {
|
||||
const newCentroids = clusters.map((cluster) => {
|
||||
if (cluster.length === 0) return centroids[0]; // Fallback
|
||||
|
||||
const avgR = Math.round(cluster.reduce((sum, c) => sum + c.r, 0) / cluster.length);
|
||||
const avgG = Math.round(cluster.reduce((sum, c) => sum + c.g, 0) / cluster.length);
|
||||
const avgB = Math.round(cluster.reduce((sum, c) => sum + c.b, 0) / cluster.length);
|
||||
const avgR = Math.round(
|
||||
cluster.reduce((sum, c) => sum + c.r, 0) /
|
||||
cluster.length,
|
||||
);
|
||||
const avgG = Math.round(
|
||||
cluster.reduce((sum, c) => sum + c.g, 0) /
|
||||
cluster.length,
|
||||
);
|
||||
const avgB = Math.round(
|
||||
cluster.reduce((sum, c) => sum + c.b, 0) /
|
||||
cluster.length,
|
||||
);
|
||||
|
||||
return { r: avgR, g: avgG, b: avgB };
|
||||
});
|
||||
|
||||
// Check convergence
|
||||
const converged = centroids.every((c, i) =>
|
||||
const converged = centroids.every(
|
||||
(c, i) =>
|
||||
c.r === newCentroids[i].r &&
|
||||
c.g === newCentroids[i].g &&
|
||||
c.b === newCentroids[i].b
|
||||
c.b === newCentroids[i].b,
|
||||
);
|
||||
|
||||
centroids = newCentroids;
|
||||
@@ -869,8 +961,14 @@ kMeansClustering(colors, k) {
|
||||
|
||||
// Sort by saturation (most saturated first)
|
||||
return centroids.sort((a, b) => {
|
||||
const satA = (Math.max(a.r, a.g, a.b) - Math.min(a.r, a.g, a.b)) / Math.max(a.r, a.g, a.b);
|
||||
const satB = (Math.max(b.r, b.g, b.b) - Math.min(b.r, b.g, b.b)) / Math.max(b.r, b.g, b.b);
|
||||
const satA =
|
||||
(Math.max(a.r, a.g, a.b) -
|
||||
Math.min(a.r, a.g, a.b)) /
|
||||
Math.max(a.r, a.g, a.b);
|
||||
const satB =
|
||||
(Math.max(b.r, b.g, b.b) -
|
||||
Math.min(b.r, b.g, b.b)) /
|
||||
Math.max(b.r, b.g, b.b);
|
||||
return satB - satA;
|
||||
});
|
||||
},
|
||||
|
||||
Reference in New Issue
Block a user