257 lines
9.2 KiB
Python
257 lines
9.2 KiB
Python
import os
|
|
import json
|
|
import glob
|
|
import pandas as pd
|
|
from docx import Document
|
|
from docx.document import Document as _Document
|
|
from docx.oxml.text.paragraph import CT_P
|
|
from docx.oxml.table import CT_Tbl
|
|
from docx.table import _Cell, Table
|
|
from docx.text.paragraph import Paragraph
|
|
from openai import OpenAI
|
|
from dotenv import load_dotenv
|
|
|
|
# Carica le variabili d'ambiente
|
|
load_dotenv()
|
|
|
|
# Configurazione directory
|
|
INPUT_DIR = './input'
|
|
OUTPUT_DIR = './output'
|
|
TEMPLATE_FILE = './template/use_case_template.csv'
|
|
|
|
# Assicurati che le directory esistano
|
|
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
|
|
|
# Inizializza client OpenAI
|
|
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
|
|
|
def iter_block_items(parent):
|
|
"""
|
|
Yield each paragraph and table child within *parent*, in document order.
|
|
Each returned value is an instance of either Table or Paragraph.
|
|
"""
|
|
if isinstance(parent, _Document):
|
|
parent_elm = parent.element.body
|
|
elif isinstance(parent, _Cell):
|
|
parent_elm = parent._tc
|
|
else:
|
|
raise ValueError("something's not right")
|
|
|
|
for child in parent_elm.iterchildren():
|
|
if isinstance(child, CT_P):
|
|
yield Paragraph(child, parent)
|
|
elif isinstance(child, CT_Tbl):
|
|
yield Table(child, parent)
|
|
|
|
def read_docx_chunks(file_path, chunk_size=4000):
|
|
"""
|
|
Legge il file .docx e restituisce un generatore di chunk di testo.
|
|
Mantiene l'ordine di paragrafi e tabelle.
|
|
chunk_size: numero approssimativo di caratteri per chunk.
|
|
"""
|
|
try:
|
|
doc = Document(file_path)
|
|
current_chunk = []
|
|
current_length = 0
|
|
|
|
for block in iter_block_items(doc):
|
|
text = ""
|
|
if isinstance(block, Paragraph):
|
|
text = block.text.strip()
|
|
if text:
|
|
text += "\n"
|
|
elif isinstance(block, Table):
|
|
# Converti tabella in testo (markdown-like o pipe separated)
|
|
for row in block.rows:
|
|
row_data = [cell.text.strip() for cell in row.cells]
|
|
text += "| " + " | ".join(row_data) + " |\n"
|
|
text += "\n"
|
|
|
|
if text:
|
|
current_chunk.append(text)
|
|
current_length += len(text)
|
|
|
|
# Se superiamo la dimensione del chunk, yieldiamo
|
|
if current_length >= chunk_size:
|
|
yield "".join(current_chunk)
|
|
current_chunk = []
|
|
current_length = 0
|
|
|
|
# Yield dell'ultimo chunk se presente
|
|
if current_chunk:
|
|
yield "".join(current_chunk)
|
|
|
|
except Exception as e:
|
|
print(f"Errore lettura {file_path}: {e}")
|
|
yield None
|
|
|
|
def parse_markdown_table(text):
|
|
"""
|
|
Analizza un testo contenente una tabella Markdown e restituisce un DataFrame pandas.
|
|
"""
|
|
lines = text.split('\n')
|
|
table_lines = [line.strip() for line in lines if line.strip().startswith('|')]
|
|
|
|
if len(table_lines) < 2:
|
|
return None
|
|
|
|
# Trova la riga separatrice (es. |---|---|)
|
|
separator_index = -1
|
|
for i, line in enumerate(table_lines):
|
|
# Rimuovi pipe e spazi per controllare se contiene solo trattini/due punti
|
|
content = line.replace('|', '').replace(':', '').replace('-', '').strip()
|
|
if not content: # Se vuota dopo aver rimosso i caratteri separatori, è una riga separatrice
|
|
separator_index = i
|
|
break
|
|
|
|
if separator_index <= 0:
|
|
return None
|
|
|
|
def split_row(row_str):
|
|
# Split semplice per pipe
|
|
parts = row_str.split('|')
|
|
# Rimuovi primo e ultimo elemento se vuoti (dovuti ai pipe esterni)
|
|
if row_str.startswith('|'): parts.pop(0)
|
|
if row_str.endswith('|'): parts.pop(-1)
|
|
return [p.strip() for p in parts]
|
|
|
|
headers = split_row(table_lines[separator_index - 1])
|
|
data_rows = table_lines[separator_index + 1:]
|
|
|
|
data = []
|
|
for row in data_rows:
|
|
cols = split_row(row)
|
|
# Allinea colonne
|
|
if len(cols) == len(headers):
|
|
data.append(cols)
|
|
elif len(cols) < len(headers):
|
|
data.append(cols + [''] * (len(headers) - len(cols)))
|
|
else:
|
|
data.append(cols[:len(headers)])
|
|
|
|
if not data:
|
|
return None
|
|
|
|
return pd.DataFrame(data, columns=headers)
|
|
|
|
def step1_process_pages():
|
|
"""Step 1: Processa pagine -> Markdown -> CSV (Algoritmico)"""
|
|
print("\n--- INIZIO STEP 1: Word -> Markdown -> CSV ---")
|
|
word_files = glob.glob(os.path.join(INPUT_DIR, "*.docx"))
|
|
|
|
if not word_files:
|
|
print("Nessun file .docx trovato in input.")
|
|
return
|
|
|
|
# Colonne attese per validazione (opzionale, ma utile per il prompt)
|
|
expected_columns = ["ID", "Descrizione", "Risultato Atteso", "Risultato Ottenuto", "Stato"]
|
|
|
|
for file_path in word_files:
|
|
filename = os.path.basename(file_path)
|
|
file_base_name = os.path.splitext(filename)[0]
|
|
print(f"Elaborazione: {filename}...")
|
|
|
|
# Directory output
|
|
output_subdir = os.path.join(OUTPUT_DIR, file_base_name)
|
|
os.makedirs(output_subdir, exist_ok=True)
|
|
|
|
chunk_count = 0
|
|
for chunk in read_docx_chunks(file_path):
|
|
if not chunk:
|
|
continue
|
|
|
|
chunk_count += 1
|
|
print(f" -> Elaborazione Pagina/Chunk {chunk_count}...")
|
|
|
|
system_prompt = f"""
|
|
Sei un esperto QA. Analizza il frammento di documento fornito.
|
|
Estrai TUTTI i dati relativi a Use Case, Test Case, Scenari e Verifiche senza rielaborare il testo, il testo di Use Case, Test Case, Scenari e Verifiche deve rimanere IDENTICO a quello letto.
|
|
|
|
Output richiesto:
|
|
- Genera una TABELLA MARKDOWN valida.
|
|
- La tabella DEVE avere ESATTAMENTE queste colonne: {', '.join(expected_columns)}.
|
|
- Se un dato non è presente, lascia la cella vuota.
|
|
- Se non trovi NESSUN dato rilevante, rispondi ESATTAMENTE con "NO_DATA".
|
|
- NON aggiungere altro testo prima o dopo la tabella.
|
|
"""
|
|
|
|
user_prompt = f"Frammento {chunk_count}:\n\n{chunk}"
|
|
|
|
try:
|
|
response = client.chat.completions.create(
|
|
model="gpt-4o",
|
|
messages=[
|
|
{"role": "system", "content": system_prompt},
|
|
{"role": "user", "content": user_prompt}
|
|
],
|
|
temperature=0.1
|
|
)
|
|
|
|
content = response.choices[0].message.content.strip()
|
|
|
|
# Pulisci markdown fences
|
|
if content.startswith("```markdown"):
|
|
content = content.replace("```markdown", "").replace("```", "")
|
|
elif content.startswith("```"):
|
|
content = content.replace("```", "")
|
|
|
|
content = content.strip()
|
|
|
|
if content and "NO_DATA" not in content:
|
|
# 1. Salva Markdown
|
|
md_path = os.path.join(output_subdir, f"chunk_{chunk_count}.md")
|
|
with open(md_path, 'w', encoding='utf-8') as f:
|
|
f.write(content)
|
|
|
|
# 2. Converti in CSV algoritmicamente
|
|
df = parse_markdown_table(content)
|
|
if df is not None and not df.empty:
|
|
csv_path = os.path.join(output_subdir, f"chunk_{chunk_count}.csv")
|
|
df.to_csv(csv_path, index=False, encoding='utf-8')
|
|
# print(f" -> Generato CSV: {csv_path}")
|
|
else:
|
|
print(f" -> Warning: Impossibile parsare tabella in chunk {chunk_count}")
|
|
else:
|
|
pass
|
|
|
|
except Exception as e:
|
|
print(f"Errore chunk {chunk_count} di {filename}: {e}")
|
|
|
|
def step2_aggregate_csvs():
|
|
"""Step 2: Aggrega i frammenti CSV in un unico file finale per documento."""
|
|
print("\n--- INIZIO STEP 2: Aggregazione CSV ---")
|
|
|
|
subdirs = [d for d in glob.glob(os.path.join(OUTPUT_DIR, "*")) if os.path.isdir(d)]
|
|
|
|
if not subdirs:
|
|
print("Nessuna cartella di frammenti trovata in output.")
|
|
return
|
|
|
|
for fragments_dir in subdirs:
|
|
doc_name = os.path.basename(fragments_dir)
|
|
print(f"Aggregazione per: {doc_name}...")
|
|
|
|
all_files = glob.glob(os.path.join(fragments_dir, "*.csv"))
|
|
try:
|
|
all_files.sort(key=lambda x: int(os.path.basename(x).split('_')[1].split('.')[0]))
|
|
except:
|
|
all_files.sort()
|
|
|
|
if not all_files:
|
|
print(f" -> Nessun frammento CSV trovato in {fragments_dir}")
|
|
continue
|
|
|
|
combined_df = pd.concat((pd.read_csv(f) for f in all_files), ignore_index=True)
|
|
|
|
output_csv_path = os.path.join(OUTPUT_DIR, f"{doc_name}.csv")
|
|
combined_df.to_csv(output_csv_path, index=False, encoding='utf-8')
|
|
print(f" -> Creato CSV finale: {output_csv_path}")
|
|
|
|
def main():
|
|
step1_process_pages()
|
|
step2_aggregate_csvs()
|
|
print("\nProcesso completato.")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|