# TODO - Componenti da Sviluppare **Last Updated**: 2025-10-20 **Project Completion**: ~72% (Infrastructure + CLI + Workers + 3 Collectors + 2 Generators complete, **MVP VALIDATED** ✅) --- ## ✅ Completamenti Recenti ### Infrastruttura (100% Complete) - ✅ **Python 3.12 Migration** - Tutti i file aggiornati da 3.13/3.14 a 3.12 - ✅ **Docker Development Environment** - Tutti i Dockerfile creati e testati - `deploy/docker/Dockerfile.api` - Multi-stage build con Poetry - `deploy/docker/Dockerfile.chat` - WebSocket server (codice da implementare) - `deploy/docker/Dockerfile.worker` - Celery worker (codice da implementare) - `deploy/docker/Dockerfile.frontend` - React + Nginx - `deploy/docker/docker-compose.dev.yml` - Ambiente completo con 6 servizi - ✅ **CI/CD Pipelines** - GitHub Actions, GitLab CI, Gitea Actions configurati per Python 3.12 - ✅ **API Service** - FastAPI server funzionante e testato - ✅ **Database Layer** - MongoDB + Beanie ODM configurato e funzionante - ✅ **Redis** - Cache e message broker operativi - ✅ **Auto-Remediation Engine** - Implementato e testato - ✅ **MCP Client** - Integrazione base con Model Context Protocol - ✅ **CLI Tool** - Strumento CLI completo con 11 comandi (2025-10-19) - ✅ **Celery Workers** - Sistema completo task asincroni con 8 task (2025-10-19) - ✅ **VMware Collector** - Collector completo per vSphere con BaseCollector (2025-10-19) ### Servizi Operativi ```bash # Servizi attualmente funzionanti in Docker ✅ MongoDB (porta 27017) - Database principale ✅ Redis (porta 6379) - Cache e message broker ✅ API (porta 8000) - FastAPI con health check funzionante ✅ Worker - Celery worker con 4 code e 8 task ❌ Chat (porta 8001) - Dockerfile pronto, codice mancante (main.py) ❌ Frontend (porta 80) - Build funzionante, app minima ``` --- ## 🔴 Componenti Critici Mancanti ### 1. Chat Service (WebSocket Server) **Stato**: ⚠️ Parziale - Solo agent.py presente **File da creare**: `src/datacenter_docs/chat/main.py` **Descrizione**: - Server WebSocket per chat in tempo reale - Integrazione con DocumentationAgent esistente - Gestione sessioni utente - Conversational memory **Dipendenze**: - ✅ `python-socketio` (già in pyproject.toml) - ✅ `websockets` (già in pyproject.toml) - ✅ `chat/agent.py` (già presente) **Riferimenti**: - Script Poetry definito: `docs-chat = "datacenter_docs.chat.main:start"` (line 95 pyproject.toml) - Dockerfile pronto: `deploy/docker/Dockerfile.chat` - Porta configurata: 8001 --- ### 2. Celery Worker Service **Stato**: ✅ **COMPLETATO** **Directory**: `src/datacenter_docs/workers/` **File implementati**: - ✅ `src/datacenter_docs/workers/__init__.py` - Module initialization - ✅ `src/datacenter_docs/workers/celery_app.py` - Configurazione Celery completa - ✅ `src/datacenter_docs/workers/tasks.py` - 8 task asincroni implementati **Tasks implementati**: 1. ✅ **generate_documentation_task** - Generazione documentazione periodica (ogni 6 ore) 2. ✅ **generate_section_task** - Generazione sezione specifica 3. ✅ **execute_auto_remediation_task** - Esecuzione azioni correttive 4. ✅ **process_ticket_task** - Processamento ticket con AI 5. ✅ **collect_infrastructure_data_task** - Raccolta dati infrastruttura (ogni ora) 6. ✅ **cleanup_old_data_task** - Pulizia dati vecchi (giornaliero, 2 AM) 7. ✅ **update_system_metrics_task** - Aggiornamento metriche (ogni 15 min) 8. ✅ **Task base class** - DatabaseTask con inizializzazione DB automatica **Caratteristiche**: - ✅ 4 code separate: documentation, auto_remediation, data_collection, maintenance - ✅ Rate limiting configurato (10 auto-remediation/ora, 5 generazioni/ora) - ✅ Scheduling periodico con Celery Beat - ✅ Task lifecycle signals (prerun, postrun, success, failure) - ✅ Timeout configurati (1h hard, 50min soft) - ✅ Integrazione completa con MongoDB/Beanie - ✅ Logging completo e audit trail - ⚠️ Task skeletons pronti (richiedono Collectors/Generators per funzionalità complete) **Periodic Schedule**: - Every 6 hours: Full documentation generation - Every 1 hour: Infrastructure data collection - Every 15 minutes: System metrics update - Daily at 2 AM: Old data cleanup **Dipendenze**: - ✅ `celery[redis]` (già in pyproject.toml) - ✅ `flower` per monitoring (già in pyproject.toml) - ✅ Redis configurato in docker-compose **Riferimenti**: - Script Poetry definito: `docs-worker = "datacenter_docs.workers.celery_app:start"` (line 95 pyproject.toml) - Dockerfile pronto: `deploy/docker/Dockerfile.worker` - **Completato il**: 2025-10-19 --- ### 3. CLI Tool **Stato**: ✅ **COMPLETATO** **File**: `src/datacenter_docs/cli.py` **Funzionalità implementate**: ```bash # Comandi implementati datacenter-docs serve # ✅ Avvia API server (uvicorn) datacenter-docs worker # ✅ Avvia Celery worker (skeleton) datacenter-docs init-db # ✅ Inizializza database con collezioni e dati datacenter-docs generate
# ✅ Genera sezione specifica (skeleton) datacenter-docs generate-all # ✅ Genera tutta la documentazione (skeleton) datacenter-docs list-sections # ✅ Lista sezioni disponibili datacenter-docs stats # ✅ Mostra statistiche sistema datacenter-docs remediation enable # ✅ Abilita auto-remediation datacenter-docs remediation disable # ✅ Disabilita auto-remediation datacenter-docs remediation status # ✅ Mostra stato policies datacenter-docs version # ✅ Info versione ``` **Caratteristiche**: - ✅ Interfaccia Typer con Rich formatting - ✅ Comandi asincroni con MongoDB/Beanie - ✅ Gestione completa auto-remediation policies - ✅ Statistiche in tempo reale - ✅ Gestione errori e help completo - ⚠️ Generate commands sono skeleton (richiedono Collectors/Generators) **Dipendenze**: - ✅ `typer` (già in pyproject.toml) - ✅ `rich` per output colorato (già in pyproject.toml) **Riferimenti**: - Script Poetry definito: `datacenter-docs = "datacenter_docs.cli:app"` (line 93 pyproject.toml) - **Completato il**: 2025-10-19 --- ## 🟡 Componenti da Completare ### 4. Collectors (Data Collection) **Stato**: ⚠️ Parziale - Base + 3 collectors implementati (60%) **Directory**: `src/datacenter_docs/collectors/` **File implementati**: - ✅ `base.py` - BaseCollector abstract class (COMPLETATO 2025-10-19) - ✅ `vmware_collector.py` - VMware vSphere collector (COMPLETATO 2025-10-19) - ✅ `proxmox_collector.py` - Proxmox VE collector (COMPLETATO 2025-10-20) - ✅ `kubernetes_collector.py` - Kubernetes collector (COMPLETATO 2025-10-20) - ✅ `__init__.py` - Module exports **VMware Collector Features**: - ✅ Connection via MCP client with fallback to mock data - ✅ Collects VMs (power state, resources, tools status, IPs) - ✅ Collects ESXi hosts (hardware, version, uptime, maintenance mode) - ✅ Collects clusters (DRS, HA, vSAN, resources) - ✅ Collects datastores (capacity, usage, accessibility) - ✅ Collects networks (VLANs, port groups, distributed switches) - ✅ Calculates comprehensive statistics (totals, usage percentages) - ✅ Data validation with VMware-specific checks - ✅ MongoDB storage via BaseCollector.store() - ✅ Integrated with Celery task `collect_infrastructure_data_task` - ✅ Full async/await workflow with connect/collect/validate/store/disconnect - ✅ Comprehensive error handling and logging **Proxmox Collector Features** (COMPLETATO 2025-10-20): - ✅ Connection via MCP client with fallback to mock data - ✅ Collects VMs/QEMU (power state, resources, uptime) - ✅ Collects LXC containers (resources, status) - ✅ Collects Proxmox nodes (hardware, CPU, memory, storage) - ✅ Collects cluster info (quorum, version, nodes) - ✅ Collects storage (local, NFS, Ceph) - ✅ Collects networks (bridges, VLANs, interfaces) - ✅ Calculates comprehensive statistics (VMs, containers, nodes, storage) - ✅ Data validation with Proxmox-specific checks - ✅ MongoDB storage via BaseCollector.store() - ✅ Integrated with Celery tasks - ✅ Full async/await workflow - ✅ Tested and validated with mock data **Kubernetes Collector Features** (COMPLETATO 2025-10-20): - ✅ Connection via MCP client with fallback to mock data - ✅ Collects Namespaces (5 default namespaces) - ✅ Collects Nodes (master + workers, CPU, memory, version) - ✅ Collects Pods (status, containers, restart count, namespace) - ✅ Collects Deployments (replicas, ready state, strategy) - ✅ Collects Services (LoadBalancer, NodePort, ClusterIP) - ✅ Collects Ingresses (hosts, TLS, backend services) - ✅ Collects ConfigMaps and Secrets (metadata only) - ✅ Collects Persistent Volumes and PVCs - ✅ Calculates comprehensive K8s statistics (56 CPU cores, 224 GB RAM, 6 pods, 9 containers) - ✅ Data validation with Kubernetes-specific checks - ✅ MongoDB storage via BaseCollector.store() - ✅ Integrated with Celery tasks (section_id: 'kubernetes' or 'k8s') - ✅ Full async/await workflow - ✅ Tested and validated with mock data **Collectors da implementare** (3 rimanenti): - ❌ `network_collector.py` - Raccolta configurazioni network (via NAPALM/Netmiko) - ❌ `storage_collector.py` - Raccolta info storage (SAN, NAS) - ❌ `database_collector.py` - Raccolta metriche database **BaseCollector Interface**: ```python class BaseCollector(ABC): @abstractmethod async def connect(self) -> bool @abstractmethod async def disconnect(self) -> None @abstractmethod async def collect(self) -> dict async def validate(self, data: dict) -> bool async def store(self, data: dict) -> bool async def run(self) -> dict # Full collection workflow def get_summary(self) -> dict ``` --- ### 5. Generators (Documentation Generation) **Stato**: ⚠️ Parziale - Base + 2 generators implementati (30%) **Directory**: `src/datacenter_docs/generators/` **File implementati**: - ✅ `base.py` - BaseGenerator abstract class (COMPLETATO 2025-10-19) - ✅ `infrastructure_generator.py` - Panoramica infrastruttura VMware (COMPLETATO 2025-10-19) - ✅ `network_generator.py` - Documentazione network (COMPLETATO 2025-10-19) - ✅ `__init__.py` - Module exports **BaseGenerator Features**: - ✅ LLM-powered documentation generation via generic LLM client - ✅ Markdown output with validation - ✅ MongoDB storage (DocumentationSection model) - ✅ File system storage (optional) - ✅ Post-processing and formatting - ✅ Full async/await workflow (generate/validate/save) - ✅ Comprehensive error handling and logging **InfrastructureGenerator Features**: - ✅ Generates comprehensive VMware infrastructure documentation - ✅ Covers VMs, hosts, clusters, datastores, networks - ✅ Statistics and resource utilization - ✅ Professional Markdown with tables and structure - ✅ Integrated with VMware collector - ✅ Connected to Celery tasks for automation **NetworkGenerator Features**: - ✅ Generates network topology documentation - ✅ VLANs, subnets, distributed switches, port groups - ✅ Security-focused documentation - ✅ Connectivity matrix and diagrams - ✅ Integrated with VMware collector (virtual networking) **Generators da implementare** (8 rimanenti): - ❌ `virtualization_generator.py` - Documentazione VMware/Proxmox dettagliata - ❌ `kubernetes_generator.py` - Documentazione K8s clusters - ❌ `storage_generator.py` - Documentazione storage SAN/NAS - ❌ `database_generator.py` - Documentazione database - ❌ `monitoring_generator.py` - Documentazione monitoring - ❌ `security_generator.py` - Audit e compliance - ❌ `runbook_generator.py` - Procedure operative - ❌ `troubleshooting_generator.py` - Guide risoluzione problemi **BaseGenerator Interface**: ```python class BaseGenerator(ABC): @abstractmethod async def generate(self, data: dict) -> str # Markdown output async def generate_with_llm(self, system: str, user: str) -> str async def validate_content(self, content: str) -> bool async def save_to_file(self, content: str, output_dir: str) -> str async def save_to_database(self, content: str, metadata: dict) -> bool async def run(self, data: dict, save_to_db: bool, save_to_file: bool) -> dict def get_summary(self) -> dict ``` **Integrazione completata**: - ✅ Celery task `generate_section_task` integrato con generators - ✅ Celery task `generate_documentation_task` integrato con generators - ✅ Full workflow: Collector → Generator → MongoDB → API - ✅ CLI commands pronti per utilizzo (`datacenter-docs generate vmware`) --- ### 6. Validators **Stato**: ⚠️ Solo skeleton **Directory**: `src/datacenter_docs/validators/` **Validators da implementare**: - `config_validator.py` - Validazione configurazioni - `security_validator.py` - Security checks - `compliance_validator.py` - Compliance checks - `performance_validator.py` - Performance checks --- ## 🟢 Componenti Opzionali/Futuri ### 7. Frontend React App **Stato**: ⚠️ Parziale - Solo skeleton **Directory**: `frontend/src/` **Componenti da sviluppare**: - Dashboard principale - Viewer documentazione - Chat interface - Auto-remediation control panel - Analytics e statistiche - Settings e configurazione **File esistenti**: - `App.jsx` e `App_Enhanced.jsx` (probabilmente prototipi) - Build configurato (Vite + Nginx) --- ### 8. MCP Server **Stato**: ❓ Esterno al progetto **Note**: Sembra essere un servizio separato per connettività ai device **Potrebbe richiedere**: - Documentazione integrazione - Client SDK/library - Examples --- ## 📋 Priorità Sviluppo Consigliata ### Fase 1 - Core Functionality (Alta Priorità) 1. ✅ **API Service** - COMPLETATO 2. ✅ **CLI Tool** - COMPLETATO (2025-10-19) 3. ✅ **Celery Workers** - COMPLETATO (2025-10-19) 4. 🔴 **Base Collectors** - Almeno 2-3 collector base (NEXT PRIORITY) 5. 🔴 **Base Generators** - Almeno 2-3 generator base ### Fase 2 - Advanced Features (Media Priorità) 6. 🟡 **Chat Service** - Per supporto real-time 7. 🟡 **Tutti i Collectors** - Completare raccolta dati 8. 🟡 **Tutti i Generators** - Completare generazione docs 9. 🟡 **Validators** - Validazione e compliance ### Fase 3 - User Interface (Bassa Priorità) 10. 🟢 **Frontend React** - UI web completa 11. 🟢 **Dashboard Analytics** - Statistiche e metriche 12. 🟢 **Admin Panel** - Gestione configurazione --- ## 📊 Stato Attuale Progetto ### ✅ Funzionante (100%) - ✅ **API FastAPI** - Server completo con tutti gli endpoint (main.py, models.py, main_enhanced.py) - ✅ **Auto-remediation Engine** - Sistema completo (auto_remediation.py, reliability.py) - ✅ **MCP Client** - Integrazione base funzionante (mcp/client.py) - ✅ **Database Layer** - MongoDB con Beanie ODM completamente configurato (utils/database.py) - ✅ **Configuration Management** - Sistema completo di gestione config (utils/config.py) - ✅ **Docker Infrastructure** - Tutti i Dockerfile e docker-compose.dev.yml pronti e testati - ✅ **CI/CD Pipelines** - GitHub Actions, GitLab CI, Gitea Actions funzionanti - ✅ **Python Environment** - Python 3.12 standardizzato ovunque ### ⚠️ Parziale (5-40%) - ⚠️ **Chat Service** (40%) - DocumentationAgent implementato (chat/agent.py), manca WebSocket server - ⚠️ **Frontend React** (20%) - Skeleton base con Vite build, app minima funzionante - ⚠️ **Collectors** (20%) - BaseCollector + VMware collector completati (2025-10-19) - ⚠️ **Generators** (5%) - Solo directory e __init__.py, nessun generator implementato - ⚠️ **Validators** (5%) - Solo directory e __init__.py, nessun validator implementato ### ❌ Mancante (0%) - ❌ **Collector Implementations** - 5 collectors rimanenti (K8s, Network, Storage, Database, Monitoring) - ❌ **Generator Implementations** - Nessuno dei 10 generators implementato - ❌ **Validator Implementations** - Nessun validator implementato - ❌ **Chat WebSocket Server** - File chat/main.py non esiste - ❌ **Logging System** - utils/logging.py non esiste - ❌ **Helper Utilities** - utils/helpers.py non esiste ### 🎯 Completamento per Categoria | Categoria | % | Stato | Blockers | |-----------|---|-------|----------| | Infrastructure | 100% | ✅ Complete | None | | API Service | 80% | ✅ Complete | None | | Database | 70% | ✅ Complete | None | | Auto-Remediation | 85% | ✅ Complete | None (fully integrated with workers) | | **CLI Tool** | **100%** | **✅ Complete** | **None** | | **Workers** | **100%** | **✅ Complete** | **None (fully integrated with collectors/generators)** | | **Collectors** | **60%** | **🟡 Partial** | **Base + VMware + Proxmox + Kubernetes done, 3 more needed** | | **Generators** | **30%** | **🟡 Partial** | **Base + Infrastructure + Network done, 8 more needed** | | MCP Integration | 60% | 🟡 Partial | External MCP server needed | | Chat Service | 40% | 🟡 Partial | WebSocket server missing | | Validators | 5% | 🟡 Medium | All implementations missing | | Frontend | 20% | 🟢 Low | UI components missing | **Overall: ~72%** (Infrastructure + CLI + Workers + 3 Collectors + 2 Generators complete, MVP validated) --- ## 🎯 Next Steps Immediati ### 🔥 CRITICAL PATH - MVP (3-4 giorni effort rimanenti) #### Step 1: CLI Tool (1 giorno) - ✅ COMPLETATO **File**: `src/datacenter_docs/cli.py` **Status**: ✅ **COMPLETATO il 2025-10-19** **Risultato**: CLI completo con 11 comandi funzionanti **Implementato**: - ✅ serve: Avvia API server con uvicorn - ✅ worker: Avvia Celery worker (con gestione errori) - ✅ init-db: Inizializza database completo - ✅ generate/generate-all: Skeleton per generazione - ✅ list-sections: Lista sezioni da DB - ✅ stats: Statistiche complete - ✅ remediation enable/disable/status: Gestione policies - ✅ version: Info sistema **Dipendenze**: ✅ Tutte presenti (typer, rich) **Priorità**: ✅ COMPLETATO --- #### Step 2: Celery Workers (1-2 giorni) - ✅ COMPLETATO **Directory**: `src/datacenter_docs/workers/` **Status**: ✅ **COMPLETATO il 2025-10-19** **Risultato**: Sistema completo task asincroni con 8 task e scheduling **Implementato**: - ✅ `__init__.py` - Module initialization - ✅ `celery_app.py` - Configurazione completa con 4 code e beat schedule - ✅ `tasks.py` - 8 task asincroni completi: - generate_documentation_task (ogni 6h) - generate_section_task - execute_auto_remediation_task (rate limit 10/h) - process_ticket_task - collect_infrastructure_data_task (ogni 1h) - cleanup_old_data_task (giornaliero 2 AM) - update_system_metrics_task (ogni 15min) - DatabaseTask base class **Caratteristiche**: - 4 code: documentation, auto_remediation, data_collection, maintenance - Rate limiting e timeout configurati - Celery Beat per task periodici - Integrazione completa MongoDB/Beanie - Task lifecycle signals - CLI command funzionante: `datacenter-docs worker` **Dipendenze**: ✅ Tutte presenti (celery[redis], flower) **Priorità**: ✅ COMPLETATO --- #### Step 3: Primo Collector (1-2 giorni) - ✅ COMPLETATO **File**: `src/datacenter_docs/collectors/vmware_collector.py` **Status**: ✅ **COMPLETATO il 2025-10-19** **Risultato**: Collector VMware completo con MCP integration **Implementato**: - ✅ `base.py` - BaseCollector con full workflow (connect/collect/validate/store/disconnect) - ✅ `vmware_collector.py` - Collector completo per vSphere: - collect_vms() - VMs con power state, risorse, tools, IPs - collect_hosts() - ESXi hosts con hardware, version, uptime - collect_clusters() - Clusters con DRS, HA, vSAN - collect_datastores() - Storage con capacità e utilizzo - collect_networks() - Networks con VLANs e distributed switches - Statistiche comprehensive (totali, percentuali utilizzo) - Validazione VMware-specific - ✅ Integrazione con MCP client (con fallback a mock data) - ✅ Integrazione con Celery task collect_infrastructure_data_task - ✅ MongoDB storage automatico via BaseCollector.store() - ✅ Async/await completo con error handling **Dipendenze**: ✅ pyvmomi già presente **Priorità**: ✅ COMPLETATO --- #### Step 4: Primo Generator (1-2 giorni) - ✅ COMPLETATO **Files**: - `src/datacenter_docs/generators/base.py` - ✅ COMPLETATO - `src/datacenter_docs/generators/infrastructure_generator.py` - ✅ COMPLETATO - `src/datacenter_docs/generators/network_generator.py` - ✅ COMPLETATO (bonus) **Status**: ✅ **COMPLETATO il 2025-10-19** **Risultato**: 2 generators funzionanti + base class completa **Implementato**: - ✅ BaseGenerator con LLM integration (via generic LLM client) - ✅ InfrastructureGenerator per documentazione VMware - ✅ NetworkGenerator per documentazione networking - ✅ MongoDB storage automatico - ✅ File system storage opzionale - ✅ Validation e post-processing - ✅ Integrazione completa con Celery tasks - ✅ Professional Markdown output con headers/footers **Caratteristiche**: - Generic LLM client (supporta OpenAI, Anthropic, LLMStudio, etc.) - Comprehensive prompts con system/user separation - Data summary formatting per migliore LLM understanding - Full async/await workflow - Error handling e logging completo **Dipendenze**: ✅ Tutte presenti (openai SDK per generic client) **Priorità**: ✅ COMPLETATO --- #### Step 5: Testing End-to-End (1 giorno) **Scenario MVP**: ```bash # 1. Inizializza DB datacenter-docs init-db # 2. Avvia worker datacenter-docs worker & # 3. Genera documentazione VMware datacenter-docs generate vmware # 4. Verifica API curl http://localhost:8000/api/v1/sections/vmware # 5. Verifica MongoDB # Controlla che i dati siano stati salvati ``` **Risultato atteso**: Documentazione VMware generata e disponibile via API --- ### 📋 SECONDARY TASKS (Post-MVP) #### Task 6: Chat WebSocket Server (1-2 giorni) **File**: `src/datacenter_docs/chat/main.py` **Status**: ❌ Non esiste **Priorità**: 🟡 MEDIA **Implementazione**: ```python import socketio from datacenter_docs.chat.agent import DocumentationAgent sio = socketio.AsyncServer(async_mode='asgi') app = socketio.ASGIApp(sio) @sio.event async def message(sid, data): agent = DocumentationAgent() response = await agent.process_query(data['query']) await sio.emit('response', response, room=sid) ``` --- #### Task 7: Rimanenti Collectors (3-5 giorni) - kubernetes_collector.py - network_collector.py - storage_collector.py - database_collector.py - monitoring_collector.py **Priorità**: 🟡 MEDIA --- #### Task 8: Rimanenti Generators (4-6 giorni) - network_generator.py - virtualization_generator.py - kubernetes_generator.py - storage_generator.py - database_generator.py - monitoring_generator.py - security_generator.py - runbook_generator.py - troubleshooting_generator.py **Priorità**: 🟡 MEDIA --- #### Task 9: Frontend React (5-7 giorni) - Dashboard principale - Documentation viewer - Chat interface - Auto-remediation panel **Priorità**: 🟢 BASSA --- ## 📝 Note Tecniche ### Architettura Target ``` User Request → API/CLI ↓ Celery Task (async) ↓ Collectors → Raccolta dati da infrastruttura (via MCP) ↓ Generators → Generazione documentazione con LLM (Claude) ↓ Storage → MongoDB ↓ API Response/Notification ``` ### Stack Tecnologico Definito - **Backend**: Python 3.12, FastAPI, Celery - **Database**: MongoDB (Beanie ODM), Redis - **LLM**: OpenAI-compatible API (supports OpenAI, Anthropic, LLMStudio, Open-WebUI, Ollama, LocalAI) - Generic LLM client: `src/datacenter_docs/utils/llm_client.py` - Configured via: `LLM_BASE_URL`, `LLM_API_KEY`, `LLM_MODEL` - Default: OpenAI GPT-4 (can be changed to any compatible provider) - **Frontend**: React 18, Vite, Material-UI - **Infrastructure**: Docker, Docker Compose - **CI/CD**: GitHub Actions, GitLab CI, Gitea Actions - **Monitoring**: Prometheus, Flower (Celery) ### Dipendenze Già Configurate Tutte le dipendenze Python sono già in `pyproject.toml` e funzionanti. Nessun package aggiuntivo necessario per iniziare lo sviluppo. ### 🔌 LLM Provider Configuration Il sistema utilizza l'**API standard OpenAI** per massima flessibilità. Puoi configurare qualsiasi provider LLM compatibile tramite variabili d'ambiente: #### OpenAI (Default) ```bash LLM_BASE_URL=https://api.openai.com/v1 LLM_API_KEY=sk-your-openai-key LLM_MODEL=gpt-4-turbo-preview ``` #### Anthropic Claude (via OpenAI-compatible API) ```bash LLM_BASE_URL=https://api.anthropic.com/v1 LLM_API_KEY=sk-ant-your-anthropic-key LLM_MODEL=claude-sonnet-4-20250514 ``` #### LLMStudio (Local) ```bash LLM_BASE_URL=http://localhost:1234/v1 LLM_API_KEY=not-needed LLM_MODEL=local-model-name ``` #### Open-WebUI (Local) ```bash LLM_BASE_URL=http://localhost:8080/v1 LLM_API_KEY=your-open-webui-key LLM_MODEL=llama3 ``` #### Ollama (Local) ```bash LLM_BASE_URL=http://localhost:11434/v1 LLM_API_KEY=not-needed LLM_MODEL=llama3 ``` **File di configurazione**: `src/datacenter_docs/utils/config.py` **Client LLM generico**: `src/datacenter_docs/utils/llm_client.py` **Utilizzo**: Tutti i componenti usano automaticamente il client configurato --- ## 📅 Timeline Stimato ### Milestone 1: MVP (5-6 giorni) - ✅ **100% COMPLETATO** 🎉 **Obiettivo**: Sistema base funzionante end-to-end - ✅ Infrastruttura Docker (COMPLETATO) - ✅ API Service (COMPLETATO) - ✅ CLI Tool (COMPLETATO 2025-10-19) - ✅ Celery Workers (COMPLETATO 2025-10-19) - ✅ 1 Collector (VMware) (COMPLETATO 2025-10-19) - ✅ 2 Generators (Infrastructure + Network) (COMPLETATO 2025-10-19) - ✅ End-to-End Testing (COMPLETATO 2025-10-20) ✅ **Deliverable**: ✅ Comando `datacenter-docs generate vmware` pronto (needs LLM API key) **Status**: **MVP VALIDATED** - All core components functional with mock data **Test Results**: See [TESTING_RESULTS.md](TESTING_RESULTS.md) --- ### Milestone 2: Core Features (2-3 settimane) **Obiettivo**: Tutti i collector e generator implementati - [ ] Tutti i 6 collectors - [ ] Tutti i 10 generators - [ ] Base validators - [ ] Chat WebSocket server - [ ] Scheduling automatico (ogni 6 ore) **Deliverable**: Documentazione completa di tutta l'infrastruttura --- ### Milestone 3: Production (3-4 settimane) **Obiettivo**: Sistema production-ready - [ ] Frontend React completo - [ ] Testing completo - [ ] Performance optimization - [ ] Security hardening - [ ] Monitoring e alerting **Deliverable**: Deploy in produzione --- ## 🚀 Quick Start per Developer ### Setup Ambiente Sviluppo ```bash # 1. Clone e setup git clone cd llm-automation-docs-and-remediation-engine # 2. Install dependencies poetry install # 3. Avvia stack Docker cd deploy/docker docker-compose -f docker-compose.dev.yml up -d # 4. Verifica servizi docker-compose -f docker-compose.dev.yml ps curl http://localhost:8000/health # 5. Accedi al container API per sviluppo docker exec -it datacenter-api bash ``` ### Development Workflow ```bash # Durante sviluppo, modifica codice in src/ # I volumi Docker sono montati, quindi le modifiche sono immediate # Restart servizi dopo modifiche cd deploy/docker docker-compose -f docker-compose.dev.yml restart api # Visualizza logs docker-compose -f docker-compose.dev.yml logs -f api ``` ### Cosa Implementare per Primo 1. **src/datacenter_docs/cli.py** - CLI tool base 2. **src/datacenter_docs/workers/celery_app.py** - Celery setup 3. **src/datacenter_docs/collectors/base.py** - Base collector class 4. **src/datacenter_docs/collectors/vmware_collector.py** - Primo collector 5. **src/datacenter_docs/generators/base.py** - Base generator class 6. **src/datacenter_docs/generators/infrastructure_generator.py** - Primo generator ### Testing ```bash # Unit tests poetry run pytest # Test specifico poetry run pytest tests/test_collectors/test_vmware.py # Coverage poetry run pytest --cov=src/datacenter_docs --cov-report=html ``` --- ## 📊 Summary | Status | Count | % | |--------|-------|---| | ✅ Completato | ~9 componenti principali | 55% | | ⚠️ Parziale | 4 componenti | 15% | | ❌ Da implementare | ~20 componenti | 30% | **Focus immediato**: End-to-End Testing e validazione workflow completo **Estimated Time to MVP**: Poche ore rimanenti (solo testing con LLM API configurata) **Estimated Time to Production**: 2-3 settimane full-time per completare tutti i collectors/generators --- **Last Updated**: 2025-10-19 **Next Review**: Dopo completamento MVP (CLI + Workers + 1 Collector + 1 Generator)