Update SCHEME.md
Some checks failed
Build / Build & Push Docker Images (api) (push) Has been cancelled
Build / Build & Push Docker Images (chat) (push) Has been cancelled
Build / Build & Push Docker Images (frontend) (push) Has been cancelled
Build / Build & Push Docker Images (worker) (push) Has been cancelled
Build / Code Quality Checks (push) Has been cancelled
Some checks failed
Build / Build & Push Docker Images (api) (push) Has been cancelled
Build / Build & Push Docker Images (chat) (push) Has been cancelled
Build / Build & Push Docker Images (frontend) (push) Has been cancelled
Build / Build & Push Docker Images (worker) (push) Has been cancelled
Build / Code Quality Checks (push) Has been cancelled
This commit is contained in:
729
SCHEME.md
Normal file
729
SCHEME.md
Normal file
@@ -0,0 +1,729 @@
|
||||
# 📚 Automated Infrastructure Documentation System
|
||||
|
||||
Sistema automatizzato per la generazione e mantenimento della documentazione tecnica dell'infrastruttura aziendale tramite LLM locale con validazione umana e pubblicazione GitOps.
|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://www.python.org/downloads/)
|
||||
[](https://redis.io/)
|
||||
|
||||
## 📋 Indice
|
||||
|
||||
- [Overview](#overview)
|
||||
- [Architettura](#architettura)
|
||||
- [Schema Architetturale](#schema-architetturale)
|
||||
- [Schema Tecnico](#schema-tecnico)
|
||||
- [Contatti](#contatti)
|
||||
|
||||
## 🎯 Overview
|
||||
|
||||
Sistema progettato per **automatizzare la creazione e l'aggiornamento della documentazione tecnica** di sistemi infrastrutturali complessi (VMware, Kubernetes, Linux, Cisco, ecc.) utilizzando un Large Language Model locale (Qwen).
|
||||
|
||||
### Caratteristiche Principali
|
||||
|
||||
- ✅ **Raccolta dati asincrona** da molteplici sistemi infrastrutturali
|
||||
- ✅ **Isolamento di sicurezza**: LLM non accede mai ai sistemi live
|
||||
- ✅ **Change Detection**: Documentazione generata solo su modifiche rilevate
|
||||
- ✅ **Redis Cache** per storage dati e performance
|
||||
- ✅ **LLM locale on-premise** (Qwen) tramite MCP Server
|
||||
- ✅ **Human-in-the-loop validation** con workflow GitOps
|
||||
- ✅ **CI/CD automatizzato** per pubblicazione
|
||||
|
||||
## 🏗️ Architettura
|
||||
|
||||
Il sistema è suddiviso in **3 flussi principali**:
|
||||
|
||||
1. **Raccolta Dati (Background)**: Connettori interrogano periodicamente i sistemi infrastrutturali tramite API e aggiornano Redis
|
||||
2. **Change Detection**: Sistema di rilevamento modifiche che attiva la generazione documentazione solo quando necessario
|
||||
3. **Generazione e Pubblicazione (Triggered)**: LLM locale (Qwen) genera markdown leggendo da Redis, seguito da review umana e deploy automatico
|
||||
|
||||
> **Principio di Sicurezza**: L'LLM non ha mai accesso diretto ai sistemi infrastrutturali. Tutti i dati sono letti da Redis.
|
||||
|
||||
> **Principio di Efficienza**: La documentazione viene generata solo quando il sistema rileva modifiche nella configurazione infrastrutturale.
|
||||
|
||||
---
|
||||
|
||||
## 📊 Schema Architetturale
|
||||
|
||||
### Management View
|
||||
|
||||
Schema semplificato per presentazioni executive e management.
|
||||
|
||||
```mermaid
|
||||
graph TB
|
||||
%% Styling
|
||||
classDef infrastructure fill:#e1f5ff,stroke:#01579b,stroke-width:3px,color:#333
|
||||
classDef kafka fill:#fff3e0,stroke:#e65100,stroke-width:3px,color:#333
|
||||
classDef cache fill:#f3e5f5,stroke:#4a148c,stroke-width:3px,color:#333
|
||||
classDef llm fill:#e8f5e9,stroke:#1b5e20,stroke-width:3px,color:#333
|
||||
classDef git fill:#fce4ec,stroke:#880e4f,stroke-width:3px,color:#333
|
||||
classDef human fill:#fff9c4,stroke:#f57f17,stroke-width:3px,color:#333
|
||||
|
||||
%% ========================================
|
||||
%% FLUSSO 1: RACCOLTA DATI (Background)
|
||||
%% ========================================
|
||||
|
||||
INFRA[("🏢 SISTEMI<br/>INFRASTRUTTURALI<br/><br/>VMware | K8s | Linux | Cisco")]:::infrastructure
|
||||
|
||||
CONN["🔌 CONNETTORI<br/>Polling Automatico"]:::infrastructure
|
||||
|
||||
KAFKA[("📨 APACHE KAFKA<br/>Message Broker<br/>+ Persistenza")]:::kafka
|
||||
|
||||
CONSUMER["⚙️ KAFKA CONSUMER<br/>Processor Service"]:::kafka
|
||||
|
||||
REDIS[("💾 REDIS CACHE<br/>(Opzionale)<br/>Performance Layer")]:::cache
|
||||
|
||||
INFRA -->|"API Polling<br/>Continuo"| CONN
|
||||
CONN -->|"Publish<br/>Eventi"| KAFKA
|
||||
KAFKA -->|"Consume<br/>Stream"| CONSUMER
|
||||
CONSUMER -.->|"Update<br/>Opzionale"| REDIS
|
||||
|
||||
%% ========================================
|
||||
%% FLUSSO 2: GENERAZIONE DOCUMENTAZIONE
|
||||
%% ========================================
|
||||
|
||||
USER["👤 UTENTE<br/>Richiesta Doc"]:::human
|
||||
|
||||
LLM["🤖 LLM ENGINE<br/>Claude / GPT"]:::llm
|
||||
|
||||
MCP["🔧 MCP SERVER<br/>API Control Platform"]:::llm
|
||||
|
||||
DOC["📄 DOCUMENTO<br/>Markdown Generato"]:::llm
|
||||
|
||||
USER -->|"1. Prompt"| LLM
|
||||
LLM -->|"2. Tool Call"| MCP
|
||||
MCP -->|"3a. Query"| KAFKA
|
||||
MCP -.->|"3b. Query<br/>Fast"| REDIS
|
||||
KAFKA -->|"4a. Dati"| MCP
|
||||
REDIS -.->|"4b. Dati"| MCP
|
||||
MCP -->|"5. Context"| LLM
|
||||
LLM -->|"6. Genera"| DOC
|
||||
|
||||
%% ========================================
|
||||
%% FLUSSO 3: VALIDAZIONE E PUBBLICAZIONE
|
||||
%% ========================================
|
||||
|
||||
GIT["📦 GITLAB<br/>Repository"]:::git
|
||||
|
||||
PR["🔀 PULL REQUEST<br/>Review Automatica"]:::git
|
||||
|
||||
TECH["👨💼 TEAM TECNICO<br/>Validazione Umana"]:::human
|
||||
|
||||
PIPELINE["⚡ CI/CD PIPELINE<br/>GitLab Runner"]:::git
|
||||
|
||||
MKDOCS["📚 MKDOCS<br/>Static Site Generator"]:::git
|
||||
|
||||
WEB["🌐 DOCUMENTAZIONE<br/>GitLab Pages<br/>(Pubblicata)"]:::git
|
||||
|
||||
DOC -->|"Push +<br/>Branch"| GIT
|
||||
GIT -->|"Crea"| PR
|
||||
PR -->|"Notifica"| TECH
|
||||
TECH -->|"Approva +<br/>Merge"| GIT
|
||||
GIT -->|"Trigger"| PIPELINE
|
||||
PIPELINE -->|"Build"| MKDOCS
|
||||
MKDOCS -->|"Deploy"| WEB
|
||||
|
||||
%% ========================================
|
||||
%% ANNOTAZIONI SICUREZZA
|
||||
%% ========================================
|
||||
|
||||
SECURITY["🔒 SICUREZZA<br/>LLM isolato dai sistemi live"]:::human
|
||||
PERF["⚡ PERFORMANCE<br/>Cache Redis opzionale"]:::cache
|
||||
|
||||
LLM -.->|"NESSUN<br/>ACCESSO"| INFRA
|
||||
|
||||
SECURITY -.-> LLM
|
||||
PERF -.-> REDIS
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🔧 Schema Tecnico
|
||||
|
||||
### Implementation View
|
||||
|
||||
Schema dettagliato per il team tecnico con specifiche implementative.
|
||||
|
||||
```mermaid
|
||||
graph TB
|
||||
%% Styling tecnico
|
||||
classDef infra fill:#e1f5ff,stroke:#01579b,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef connector fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef kafka fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef cache fill:#f3e5f5,stroke:#4a148c,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef llm fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef git fill:#fce4ec,stroke:#880e4f,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef monitor fill:#fff8e1,stroke:#f57f17,stroke-width:2px,color:#333,font-size:11px
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 1: SISTEMI SORGENTE
|
||||
%% =====================================
|
||||
|
||||
subgraph SOURCES["🏢 INFRASTRUCTURE SOURCES"]
|
||||
VCENTER["VMware vCenter<br/>API: vSphere REST 7.0+<br/>Port: 443/HTTPS<br/>Auth: API Token"]:::infra
|
||||
K8S_API["Kubernetes API<br/>API: v1.28+<br/>Port: 6443/HTTPS<br/>Auth: ServiceAccount + RBAC"]:::infra
|
||||
LINUX["Linux Servers<br/>Protocol: SSH/Ansible<br/>Port: 22<br/>Auth: SSH Keys"]:::infra
|
||||
CISCO["Cisco Devices<br/>Protocol: NETCONF/RESTCONF<br/>Port: 830/443<br/>Auth: AAA"]:::infra
|
||||
end
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 2: CONNETTORI
|
||||
%% =====================================
|
||||
|
||||
subgraph CONNECTORS["🔌 DATA COLLECTORS (Python/Go)"]
|
||||
CONN_VM["VMware Collector<br/>Lang: Python 3.11<br/>Lib: pyvmomi<br/>Schedule: */15 * * * *<br/>Output: JSON"]:::connector
|
||||
|
||||
CONN_K8S["K8s Collector<br/>Lang: Python 3.11<br/>Lib: kubernetes-client<br/>Schedule: */5 * * * *<br/>Resources: pods,svc,ing,deploy"]:::connector
|
||||
|
||||
CONN_LNX["Linux Collector<br/>Lang: Python 3.11<br/>Lib: paramiko/ansible<br/>Schedule: */30 * * * *<br/>Data: sysinfo,packages,services"]:::connector
|
||||
|
||||
CONN_CSC["Cisco Collector<br/>Lang: Python 3.11<br/>Lib: ncclient<br/>Schedule: */30 * * * *<br/>Data: interfaces,routing,vlans"]:::connector
|
||||
end
|
||||
|
||||
VCENTER -->|"GET /api/vcenter/vm"| CONN_VM
|
||||
K8S_API -->|"kubectl proxy<br/>API calls"| CONN_K8S
|
||||
LINUX -->|"SSH batch<br/>commands"| CONN_LNX
|
||||
CISCO -->|"NETCONF<br/>get-config"| CONN_CSC
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 3: MESSAGE BROKER
|
||||
%% =====================================
|
||||
|
||||
subgraph MESSAGING["📨 KAFKA CLUSTER (3 brokers)"]
|
||||
KAFKA_TOPICS["Kafka Topics:<br/>• vmware.inventory (P:6, R:3)<br/>• k8s.resources (P:12, R:3)<br/>• linux.systems (P:3, R:3)<br/>• cisco.network (P:3, R:3)<br/>Retention: 7 days<br/>Format: JSON + Schema Registry"]:::kafka
|
||||
|
||||
SCHEMA["Schema Registry<br/>Avro Schemas<br/>Versioning enabled<br/>Port: 8081"]:::kafka
|
||||
end
|
||||
|
||||
CONN_VM -->|"Producer<br/>Batch 100 msg"| KAFKA_TOPICS
|
||||
CONN_K8S -->|"Producer<br/>Batch 100 msg"| KAFKA_TOPICS
|
||||
CONN_LNX -->|"Producer<br/>Batch 50 msg"| KAFKA_TOPICS
|
||||
CONN_CSC -->|"Producer<br/>Batch 50 msg"| KAFKA_TOPICS
|
||||
|
||||
KAFKA_TOPICS <--> SCHEMA
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 4: PROCESSING & CACHE
|
||||
%% =====================================
|
||||
|
||||
subgraph PROCESSING["⚙️ STREAM PROCESSING"]
|
||||
CONSUMER_GRP["Kafka Consumer Group<br/>Group ID: doc-consumers<br/>Lang: Python 3.11<br/>Lib: kafka-python<br/>Workers: 6<br/>Commit: auto (5s)"]:::kafka
|
||||
|
||||
PROCESSOR["Data Processor<br/>• Validation<br/>• Transformation<br/>• Enrichment<br/>• Deduplication"]:::kafka
|
||||
end
|
||||
|
||||
KAFKA_TOPICS -->|"Subscribe<br/>offset management"| CONSUMER_GRP
|
||||
CONSUMER_GRP --> PROCESSOR
|
||||
|
||||
subgraph STORAGE["💾 CACHE LAYER (Optional)"]
|
||||
REDIS_CLUSTER["Redis Cluster<br/>Mode: Cluster (6 nodes)<br/>Port: 6379<br/>Persistence: RDB + AOF<br/>Memory: 64GB<br/>Eviction: allkeys-lru"]:::cache
|
||||
|
||||
REDIS_KEYS["Key Structure:<br/>• vmware:vcenter-id:vms<br/>• k8s:cluster:namespace:resource<br/>• linux:hostname:info<br/>• cisco:device-id:config<br/>TTL: 1-24h based on type"]:::cache
|
||||
end
|
||||
|
||||
PROCESSOR -.->|"SET/HSET<br/>Pipeline batch"| REDIS_CLUSTER
|
||||
REDIS_CLUSTER --> REDIS_KEYS
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 5: LLM & MCP
|
||||
%% =====================================
|
||||
|
||||
subgraph LLM_LAYER["🤖 AI GENERATION LAYER"]
|
||||
LLM_ENGINE["LLM Engine<br/>Model: Claude Sonnet 4 / GPT-4<br/>API: Anthropic/OpenAI<br/>Temp: 0.3<br/>Max Tokens: 4096<br/>Timeout: 120s"]:::llm
|
||||
|
||||
MCP_SERVER["MCP Server<br/>Lang: TypeScript/Node.js<br/>Port: 3000<br/>Protocol: JSON-RPC 2.0<br/>Auth: JWT tokens"]:::llm
|
||||
|
||||
MCP_TOOLS["MCP Tools:<br/>• getVMwareInventory(vcenter)<br/>• getK8sResources(cluster,ns,type)<br/>• getLinuxSystemInfo(hostname)<br/>• getCiscoConfig(device,section)<br/>• queryTimeRange(start,end)<br/>Return: JSON + Metadata"]:::llm
|
||||
end
|
||||
|
||||
LLM_ENGINE <-->|"Tool calls<br/>JSON-RPC"| MCP_SERVER
|
||||
MCP_SERVER --> MCP_TOOLS
|
||||
|
||||
MCP_TOOLS -->|"1. Query Kafka Consumer API<br/>GET /api/v1/data"| CONSUMER_GRP
|
||||
MCP_TOOLS -.->|"2. Fallback Redis<br/>MGET/HGETALL"| REDIS_CLUSTER
|
||||
|
||||
CONSUMER_GRP -->|"JSON Response<br/>+ Timestamps"| MCP_TOOLS
|
||||
REDIS_CLUSTER -.->|"Cached JSON<br/>Fast response"| MCP_TOOLS
|
||||
|
||||
MCP_TOOLS -->|"Structured Data<br/>+ Context"| LLM_ENGINE
|
||||
|
||||
subgraph OUTPUT["📝 DOCUMENT GENERATION"]
|
||||
TEMPLATE["Template Engine<br/>Format: Jinja2<br/>Templates: markdown/*.j2<br/>Variables: from LLM"]:::llm
|
||||
|
||||
MARKDOWN["Markdown Output<br/>Format: CommonMark<br/>Metadata: YAML frontmatter<br/>Assets: diagrams in mermaid"]:::llm
|
||||
|
||||
VALIDATOR["Doc Validator<br/>• Markdown linting<br/>• Link checking<br/>• Schema validation"]:::llm
|
||||
end
|
||||
|
||||
LLM_ENGINE --> TEMPLATE
|
||||
TEMPLATE --> MARKDOWN
|
||||
MARKDOWN --> VALIDATOR
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 6: GITOPS
|
||||
%% =====================================
|
||||
|
||||
subgraph GITOPS["🔄 GITOPS WORKFLOW"]
|
||||
GIT_REPO["GitLab Repository<br/>URL: gitlab.com/docs/infra<br/>Branch strategy: main + feature/*<br/>Protected: main (require approval)"]:::git
|
||||
|
||||
GIT_API["GitLab API<br/>API: v4<br/>Auth: Project Access Token<br/>Permissions: api, write_repo"]:::git
|
||||
|
||||
PR_AUTO["Automated PR Creator<br/>Lang: Python 3.11<br/>Lib: python-gitlab<br/>Template: .gitlab/merge_request.md"]:::git
|
||||
end
|
||||
|
||||
VALIDATOR -->|"git add/commit/push"| GIT_REPO
|
||||
GIT_REPO <--> GIT_API
|
||||
GIT_API --> PR_AUTO
|
||||
|
||||
REVIEWER["👨💼 Technical Reviewer<br/>Role: Maintainer/Owner<br/>Review: diff + validation<br/>Approve: required (min 1)"]:::monitor
|
||||
|
||||
PR_AUTO -->|"Notification<br/>Email + Slack"| REVIEWER
|
||||
REVIEWER -->|"Merge to main"| GIT_REPO
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 7: CI/CD & PUBLISH
|
||||
%% =====================================
|
||||
|
||||
subgraph CICD["⚡ CI/CD PIPELINE"]
|
||||
GITLAB_CI["GitLab CI/CD<br/>Runner: docker<br/>Image: python:3.11-alpine<br/>Stages: build, test, deploy"]:::git
|
||||
|
||||
PIPELINE_JOBS["Pipeline Jobs:<br/>1. lint (markdownlint-cli)<br/>2. build (mkdocs build)<br/>3. test (link-checker)<br/>4. deploy (rsync/s3)"]:::git
|
||||
|
||||
MKDOCS_CFG["MkDocs Config<br/>Theme: material<br/>Plugins: search, tags, mermaid<br/>Extensions: admonition, codehilite"]:::git
|
||||
end
|
||||
|
||||
GIT_REPO -->|"on: push to main<br/>Webhook trigger"| GITLAB_CI
|
||||
GITLAB_CI --> PIPELINE_JOBS
|
||||
PIPELINE_JOBS --> MKDOCS_CFG
|
||||
|
||||
subgraph PUBLISH["🌐 PUBLICATION"]
|
||||
STATIC_SITE["Static Site<br/>Generator: MkDocs<br/>Output: HTML/CSS/JS<br/>Assets: optimized images"]:::git
|
||||
|
||||
CDN["GitLab Pages / S3 + CloudFront<br/>URL: docs.company.com<br/>SSL: Let's Encrypt<br/>Cache: 1h"]:::git
|
||||
|
||||
SEARCH["Search Index<br/>Engine: Algolia/Meilisearch<br/>Update: on publish<br/>API: REST"]:::git
|
||||
end
|
||||
|
||||
MKDOCS_CFG -->|"mkdocs build<br/>--strict"| STATIC_SITE
|
||||
STATIC_SITE --> CDN
|
||||
STATIC_SITE --> SEARCH
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 8: MONITORING & OBSERVABILITY
|
||||
%% =====================================
|
||||
|
||||
subgraph OBSERVABILITY["📊 MONITORING & LOGGING"]
|
||||
PROMETHEUS["Prometheus<br/>Metrics: collector lag, cache hit/miss<br/>Scrape: 30s<br/>Retention: 15d"]:::monitor
|
||||
|
||||
GRAFANA["Grafana Dashboards<br/>• Kafka metrics<br/>• Redis performance<br/>• LLM response times<br/>• Pipeline success rate"]:::monitor
|
||||
|
||||
ELK["ELK Stack<br/>Logs: all components<br/>Index: daily rotation<br/>Retention: 30d"]:::monitor
|
||||
|
||||
ALERTS["Alerting<br/>• Connector failures<br/>• Kafka lag > 10k<br/>• Redis OOM<br/>• Pipeline failures<br/>Channel: Slack + PagerDuty"]:::monitor
|
||||
end
|
||||
|
||||
CONN_VM -.->|"metrics"| PROMETHEUS
|
||||
CONN_K8S -.->|"metrics"| PROMETHEUS
|
||||
KAFKA_TOPICS -.->|"metrics"| PROMETHEUS
|
||||
REDIS_CLUSTER -.->|"metrics"| PROMETHEUS
|
||||
MCP_SERVER -.->|"metrics"| PROMETHEUS
|
||||
GITLAB_CI -.->|"metrics"| PROMETHEUS
|
||||
|
||||
PROMETHEUS --> GRAFANA
|
||||
|
||||
CONN_VM -.->|"logs"| ELK
|
||||
CONSUMER_GRP -.->|"logs"| ELK
|
||||
MCP_SERVER -.->|"logs"| ELK
|
||||
GITLAB_CI -.->|"logs"| ELK
|
||||
|
||||
GRAFANA --> ALERTS
|
||||
|
||||
%% =====================================
|
||||
%% SECURITY ANNOTATIONS
|
||||
%% =====================================
|
||||
|
||||
SEC1["🔒 SECURITY:<br/>• All APIs use TLS 1.3<br/>• Secrets in Vault/K8s Secrets<br/>• Network: private VPC<br/>• LLM has NO direct access"]:::monitor
|
||||
|
||||
SEC2["🔐 AUTHENTICATION:<br/>• API Tokens rotated 90d<br/>• RBAC enforced<br/>• Audit logs enabled<br/>• MFA required for Git"]:::monitor
|
||||
|
||||
SEC1 -.-> MCP_SERVER
|
||||
SEC2 -.-> GIT_REPO
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 💬 Sistema RAG Conversazionale
|
||||
|
||||
### Interrogazione Documentazione con AI
|
||||
|
||||
Sistema per "parlare" con la documentazione utilizzando Retrieval Augmented Generation (RAG). Permette agli utenti di porre domande in linguaggio naturale e ricevere risposte accurate basate sulla documentazione, con citazioni delle fonti.
|
||||
|
||||
#### Caratteristiche Principali
|
||||
|
||||
- ✅ **Semantic Search**: Ricerca vettoriale per comprendere l'intento della query
|
||||
- ✅ **Scalabilità**: Gestione di grandi volumi di documentazione (100k+ documenti)
|
||||
- ✅ **Performance**: Risposte in <3 secondi con caching intelligente
|
||||
- ✅ **Accuratezza**: Re-ranking e source attribution per risposte precise
|
||||
- ✅ **LLM Locale**: Qwen on-premise per privacy e controllo
|
||||
|
||||
### Schema RAG - Management View
|
||||
|
||||
```mermaid
|
||||
graph TB
|
||||
%% Styling
|
||||
classDef docs fill:#e3f2fd,stroke:#1565c0,stroke-width:3px,color:#333
|
||||
classDef process fill:#f3e5f5,stroke:#4a148c,stroke-width:3px,color:#333
|
||||
classDef vector fill:#fff3e0,stroke:#e65100,stroke-width:3px,color:#333
|
||||
classDef llm fill:#e8f5e9,stroke:#1b5e20,stroke-width:3px,color:#333
|
||||
classDef user fill:#fff9c4,stroke:#f57f17,stroke-width:3px,color:#333
|
||||
classDef cache fill:#fce4ec,stroke:#880e4f,stroke-width:3px,color:#333
|
||||
|
||||
%% ========================================
|
||||
%% INGESTION PIPELINE (Offline)
|
||||
%% ========================================
|
||||
|
||||
subgraph INGESTION["📚 INGESTION PIPELINE (Offline Process)"]
|
||||
DOCS["📄 DOCUMENTAZIONE<br/>MkDocs Output<br/>Markdown Files"]:::docs
|
||||
|
||||
CHUNKER["✂️ DOCUMENT CHUNKER<br/>Split & Overlap<br/>Metadata Extraction"]:::process
|
||||
|
||||
EMBEDDER["🧠 EMBEDDING MODEL<br/>Text → Vectors<br/>Dimensione: 768/1024"]:::process
|
||||
|
||||
VECTORDB[("🗄️ VECTOR DATABASE<br/>Qdrant/Milvus<br/>Sharded & Replicated")]:::vector
|
||||
end
|
||||
|
||||
DOCS -->|"Parse<br/>Markdown"| CHUNKER
|
||||
CHUNKER -->|"Text Chunks<br/>+ Metadata"| EMBEDDER
|
||||
EMBEDDER -->|"Store<br/>Embeddings"| VECTORDB
|
||||
|
||||
%% ========================================
|
||||
%% QUERY PIPELINE (Real-time)
|
||||
%% ========================================
|
||||
|
||||
subgraph QUERY["💬 QUERY PIPELINE (Real-time)"]
|
||||
USER["👤 UTENTE<br/>Domanda/Query"]:::user
|
||||
|
||||
QUERY_EMBED["🧠 QUERY EMBEDDING<br/>Query → Vector"]:::process
|
||||
|
||||
SEARCH["🔍 SEMANTIC SEARCH<br/>Vector Similarity<br/>Top-K Results"]:::vector
|
||||
|
||||
RERANK["📊 RE-RANKING<br/>Context Scoring<br/>Relevance Filter"]:::process
|
||||
|
||||
CONTEXT["📋 CONTEXT BUILDER<br/>Assemble Chunks<br/>Add Metadata"]:::process
|
||||
end
|
||||
|
||||
USER -->|"Natural Language<br/>Question"| QUERY_EMBED
|
||||
QUERY_EMBED -->|"Query Vector"| SEARCH
|
||||
SEARCH -->|"Search"| VECTORDB
|
||||
VECTORDB -->|"Top-K Chunks<br/>+ Scores"| SEARCH
|
||||
SEARCH -->|"Initial Results"| RERANK
|
||||
RERANK -->|"Filtered<br/>Chunks"| CONTEXT
|
||||
|
||||
%% ========================================
|
||||
%% GENERATION (LLM)
|
||||
%% ========================================
|
||||
|
||||
subgraph GENERATION["🤖 ANSWER GENERATION"]
|
||||
LLM_RAG["🤖 LLM ENGINE<br/>Qwen (Locale)<br/>+ RAG Context"]:::llm
|
||||
|
||||
ANSWER["💡 RISPOSTA<br/>Generated Answer<br/>+ Source Citations"]:::llm
|
||||
end
|
||||
|
||||
CONTEXT -->|"Context<br/>+ Sources"| LLM_RAG
|
||||
LLM_RAG -->|"Generate"| ANSWER
|
||||
ANSWER -->|"Display"| USER
|
||||
|
||||
%% ========================================
|
||||
%% CACHING & OPTIMIZATION
|
||||
%% ========================================
|
||||
|
||||
CACHE[("💾 REDIS CACHE<br/>Query Cache<br/>Embedding Cache")]:::cache
|
||||
|
||||
QUERY_EMBED -.->|"Check Cache"| CACHE
|
||||
CACHE -.->|"Cached<br/>Embedding"| SEARCH
|
||||
|
||||
SEARCH -.->|"Cache<br/>Results"| CACHE
|
||||
|
||||
%% ========================================
|
||||
%% SCALING & UPDATE
|
||||
%% ========================================
|
||||
|
||||
UPDATE["🔄 INCREMENTAL UPDATE<br/>On Doc Changes<br/>Auto Re-index"]:::docs
|
||||
|
||||
DOCS -.->|"Doc Updated"| UPDATE
|
||||
UPDATE -.->|"Re-process<br/>Changed Docs"| CHUNKER
|
||||
|
||||
%% ========================================
|
||||
%% ANNOTATIONS
|
||||
%% ========================================
|
||||
|
||||
SCALE["📈 SCALABILITÀ<br/>• Vector DB sharding<br/>• Horizontal scaling<br/>• Load balancing"]:::vector
|
||||
|
||||
PERF["⚡ PERFORMANCE<br/>• Query cache<br/>• Embedding cache<br/>• Async processing"]:::cache
|
||||
|
||||
QUALITY["✅ QUALITY<br/>• Re-ranking<br/>• Relevance scoring<br/>• Source citations"]:::process
|
||||
|
||||
SCALE -.-> VECTORDB
|
||||
PERF -.-> CACHE
|
||||
QUALITY -.-> RERANK
|
||||
```
|
||||
|
||||
### Schema RAG - Technical View
|
||||
|
||||
```mermaid
|
||||
graph TB
|
||||
%% Styling
|
||||
classDef docs fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef process fill:#f3e5f5,stroke:#4a148c,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef vector fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef llm fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef user fill:#fff9c4,stroke:#f57f17,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef cache fill:#fce4ec,stroke:#880e4f,stroke-width:2px,color:#333,font-size:11px
|
||||
classDef monitor fill:#fff8e1,stroke:#f57f17,stroke-width:2px,color:#333,font-size:11px
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 1: DOCUMENTATION SOURCE
|
||||
%% =====================================
|
||||
|
||||
subgraph DOCSOURCE["📚 DOCUMENTATION SOURCE"]
|
||||
MKDOCS_OUT["MkDocs Static Site<br/>Path: /site/<br/>Format: HTML + Markdown<br/>Assets: images, diagrams<br/>Update: on Git merge"]:::docs
|
||||
|
||||
DOC_WATCHER["Document Watcher<br/>Lang: Python 3.11<br/>Lib: watchdog<br/>Trigger: file system events<br/>Debounce: 30s"]:::docs
|
||||
|
||||
DOC_PARSER["Document Parser<br/>HTML → Plain Text<br/>Preserve structure<br/>Extract metadata<br/>Clean formatting"]:::docs
|
||||
end
|
||||
|
||||
MKDOCS_OUT --> DOC_WATCHER
|
||||
DOC_WATCHER -->|"New/Modified<br/>Docs"| DOC_PARSER
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 2: CHUNKING STRATEGY
|
||||
%% =====================================
|
||||
|
||||
subgraph CHUNKING["✂️ INTELLIGENT CHUNKING"]
|
||||
CHUNK_ENGINE["Chunking Engine<br/>Lang: Python 3.11<br/>Lib: langchain/llama-index<br/>Strategy: Recursive Character"]:::process
|
||||
|
||||
CHUNK_CONFIG["Chunking Config:<br/>• Chunk Size: 512 tokens<br/>• Overlap: 128 tokens<br/>• Separators: \\n\\n, \\n, . , ' '<br/>• Min chunk: 100 tokens<br/>• Max chunk: 1024 tokens"]:::process
|
||||
|
||||
METADATA_EXTRACTOR["Metadata Extractor<br/>Extract:<br/>• Document title<br/>• Section headers<br/>• Tags/keywords<br/>• Creation date<br/>• File path<br/>• Doc type"]:::process
|
||||
end
|
||||
|
||||
DOC_PARSER -->|"Parsed Text"| CHUNK_ENGINE
|
||||
CHUNK_ENGINE --> CHUNK_CONFIG
|
||||
CHUNK_ENGINE --> METADATA_EXTRACTOR
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 3: EMBEDDING GENERATION
|
||||
%% =====================================
|
||||
|
||||
subgraph EMBEDDING["🧠 EMBEDDING GENERATION"]
|
||||
EMBED_MODEL["Embedding Model<br/>Model: all-MiniLM-L6-v2 / BGE-M3<br/>Dim: 384/768/1024<br/>API: sentence-transformers<br/>Batch size: 32<br/>GPU: CUDA acceleration"]:::process
|
||||
|
||||
EMBED_CACHE["Embedding Cache<br/>Type: Redis Hash<br/>Key: hash(text)<br/>TTL: 30d<br/>Hit rate target: >80%"]:::cache
|
||||
|
||||
EMBED_QUEUE["Processing Queue<br/>Type: Redis List<br/>Workers: 4-8<br/>Rate: 100 chunks/s<br/>Retry: 3 attempts"]:::process
|
||||
end
|
||||
|
||||
METADATA_EXTRACTOR -->|"Chunks<br/>+ Metadata"| EMBED_QUEUE
|
||||
EMBED_QUEUE --> EMBED_MODEL
|
||||
EMBED_MODEL <-.->|"Cache<br/>Check/Store"| EMBED_CACHE
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 4: VECTOR DATABASE
|
||||
%% =====================================
|
||||
|
||||
subgraph VECTORDB["🗄️ VECTOR DATABASE CLUSTER"]
|
||||
QDRANT["Qdrant Cluster<br/>Version: 1.7+<br/>Nodes: 3-6 (replicated)<br/>Shards: auto per collection<br/>Port: 6333/6334"]:::vector
|
||||
|
||||
COLLECTIONS["Collections:<br/>• docs_main (dim: 768)<br/>• docs_code (dim: 768)<br/>• docs_api (dim: 768)<br/>Distance: Cosine<br/>Index: HNSW (M=16, ef=100)"]:::vector
|
||||
|
||||
SHARD_STRATEGY["Sharding Strategy:<br/>• Auto-sharding enabled<br/>• Shard size: 100k vectors<br/>• Replication factor: 2<br/>• Load balancing: Round-robin"]:::vector
|
||||
end
|
||||
|
||||
EMBED_MODEL -->|"Store<br/>Vectors"| QDRANT
|
||||
QDRANT --> COLLECTIONS
|
||||
QDRANT --> SHARD_STRATEGY
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 5: QUERY PROCESSING
|
||||
%% =====================================
|
||||
|
||||
subgraph QUERYPROC["💬 QUERY PROCESSING PIPELINE"]
|
||||
USER_INPUT["User Input<br/>Interface: Web UI / API<br/>Auth: JWT tokens<br/>Rate limit: 20 req/min<br/>Timeout: 30s"]:::user
|
||||
|
||||
QUERY_PREPROCESS["Query Preprocessor<br/>• Spelling correction<br/>• Intent detection<br/>• Query expansion<br/>• Language detection"]:::process
|
||||
|
||||
QUERY_EMBEDDER["Query Embedder<br/>Same model as docs<br/>Cache: Redis<br/>Latency: <50ms"]:::process
|
||||
|
||||
HYBRID_SEARCH["Hybrid Search<br/>1. Vector search (semantic)<br/>2. Keyword search (BM25)<br/>3. Fusion: RRF algorithm<br/>Top-K: 20 initial results"]:::vector
|
||||
end
|
||||
|
||||
USER_INPUT -->|"Natural<br/>Language"| QUERY_PREPROCESS
|
||||
QUERY_PREPROCESS --> QUERY_EMBEDDER
|
||||
QUERY_EMBEDDER <-.->|"Cache"| EMBED_CACHE
|
||||
QUERY_EMBEDDER -->|"Query<br/>Vector"| HYBRID_SEARCH
|
||||
HYBRID_SEARCH -->|"Search"| QDRANT
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 6: RE-RANKING & FILTERING
|
||||
%% =====================================
|
||||
|
||||
subgraph RERANK["📊 RE-RANKING & FILTERING"]
|
||||
RERANKER["Cross-Encoder Re-ranker<br/>Model: ms-marco-MiniLM<br/>Purpose: Fine-grained relevance<br/>Process: Top-20 → Top-5<br/>Latency: 100-200ms"]:::process
|
||||
|
||||
FILTER_ENGINE["Filter Engine<br/>• Relevance threshold: >0.7<br/>• Deduplication<br/>• Diversity scoring<br/>• Metadata filtering"]:::process
|
||||
|
||||
CONTEXT_BUILDER["Context Builder<br/>• Assemble top chunks<br/>• Add source citations<br/>• Format for LLM<br/>• Max context: 4k tokens"]:::process
|
||||
end
|
||||
|
||||
QDRANT -->|"Top-K<br/>Results"| RERANKER
|
||||
RERANKER --> FILTER_ENGINE
|
||||
FILTER_ENGINE --> CONTEXT_BUILDER
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 7: LLM GENERATION
|
||||
%% =====================================
|
||||
|
||||
subgraph LLMGEN["🤖 LLM ANSWER GENERATION"]
|
||||
RAG_PROMPT["RAG Prompt Template<br/>Structure:<br/>• System: You are a helpful assistant<br/>• Context: Retrieved chunks<br/>• Question: User query<br/>• Instruction: Answer using context"]:::llm
|
||||
|
||||
LLM_ENGINE["LLM Engine<br/>Model: Qwen 2.5 (14B/32B)<br/>API: Ollama/vLLM<br/>Port: 11434<br/>Temp: 0.2 (factual)<br/>Max tokens: 2048<br/>Stream: enabled"]:::llm
|
||||
|
||||
ANSWER_POST["Answer Post-processor<br/>• Citation formatting<br/>• Source links<br/>• Confidence scoring<br/>• Fallback handling"]:::llm
|
||||
end
|
||||
|
||||
CONTEXT_BUILDER -->|"Context<br/>+ Sources"| RAG_PROMPT
|
||||
QUERY_PREPROCESS -->|"Original<br/>Question"| RAG_PROMPT
|
||||
RAG_PROMPT --> LLM_ENGINE
|
||||
LLM_ENGINE --> ANSWER_POST
|
||||
ANSWER_POST -->|"Final<br/>Answer"| USER_INPUT
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 8: CACHING LAYER
|
||||
%% =====================================
|
||||
|
||||
subgraph CACHING["💾 MULTI-LEVEL CACHE"]
|
||||
REDIS_CACHE["Redis Cluster<br/>Mode: Cluster<br/>Nodes: 3<br/>Memory: 16GB<br/>Persistence: AOF"]:::cache
|
||||
|
||||
CACHE_TYPES["Cache Types:<br/>• Query embeddings (TTL: 7d)<br/>• Search results (TTL: 1h)<br/>• LLM responses (TTL: 24h)<br/>• Popular queries (no TTL)<br/>Eviction: LRU"]:::cache
|
||||
|
||||
CACHE_WARMING["Cache Warming<br/>Pre-compute:<br/>• Top 100 queries<br/>• Common patterns<br/>Schedule: daily<br/>Update: on doc changes"]:::cache
|
||||
end
|
||||
|
||||
REDIS_CACHE --> CACHE_TYPES
|
||||
CACHE_TYPES --> CACHE_WARMING
|
||||
|
||||
QUERY_EMBEDDER <-.-> REDIS_CACHE
|
||||
HYBRID_SEARCH <-.-> REDIS_CACHE
|
||||
LLM_ENGINE <-.-> REDIS_CACHE
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 9: SCALING & LOAD BALANCING
|
||||
%% =====================================
|
||||
|
||||
subgraph SCALING["📈 SCALING INFRASTRUCTURE"]
|
||||
LOAD_BALANCER["Load Balancer<br/>Type: Nginx / HAProxy<br/>Algorithm: Least connections<br/>Health checks: /health<br/>Timeout: 30s"]:::monitor
|
||||
|
||||
QUERY_API["Query API Instances<br/>Replicas: 3-10 (auto-scale)<br/>Lang: FastAPI<br/>Container: Docker<br/>Orchestration: K8s"]:::user
|
||||
|
||||
EMBED_WORKERS["Embedding Workers<br/>Replicas: 4-8<br/>GPU: Optional<br/>Queue: Redis<br/>Auto-scale: based on queue depth"]:::process
|
||||
end
|
||||
|
||||
LOAD_BALANCER --> QUERY_API
|
||||
QUERY_API --> USER_INPUT
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 10: MONITORING & OBSERVABILITY
|
||||
%% =====================================
|
||||
|
||||
subgraph MONITORING["📊 MONITORING & ANALYTICS"]
|
||||
METRICS["Prometheus Metrics<br/>• Query latency (p50, p95, p99)<br/>• Vector search time<br/>• LLM response time<br/>• Cache hit rate<br/>• Embedding generation rate<br/>Scrape: 15s"]:::monitor
|
||||
|
||||
DASHBOARDS["Grafana Dashboards<br/>• RAG Performance<br/>• Query analytics<br/>• Resource utilization<br/>• Error tracking<br/>Refresh: real-time"]:::monitor
|
||||
|
||||
ANALYTICS["Query Analytics<br/>Track:<br/>• Popular queries<br/>• Failed queries<br/>• Avg relevance scores<br/>• User satisfaction<br/>Storage: TimescaleDB"]:::monitor
|
||||
|
||||
ALERTS["Alerting Rules<br/>• Latency > 5s<br/>• Error rate > 5%<br/>• Cache hit < 70%<br/>• Vector DB down<br/>Channel: Slack + Email"]:::monitor
|
||||
end
|
||||
|
||||
METRICS --> DASHBOARDS
|
||||
DASHBOARDS --> ANALYTICS
|
||||
ANALYTICS --> ALERTS
|
||||
|
||||
QUERY_API -.->|"metrics"| METRICS
|
||||
HYBRID_SEARCH -.->|"metrics"| METRICS
|
||||
LLM_ENGINE -.->|"metrics"| METRICS
|
||||
QDRANT -.->|"metrics"| METRICS
|
||||
|
||||
%% =====================================
|
||||
%% LAYER 11: FEEDBACK LOOP
|
||||
%% =====================================
|
||||
|
||||
subgraph FEEDBACK["🔄 FEEDBACK & IMPROVEMENT"]
|
||||
USER_FEEDBACK["User Feedback<br/>• Thumbs up/down<br/>• Relevance rating<br/>• Comments<br/>Storage: PostgreSQL"]:::user
|
||||
|
||||
FEEDBACK_ANALYSIS["Feedback Analysis<br/>• Identify bad answers<br/>• Track improvement areas<br/>• A/B testing results<br/>Schedule: weekly"]:::monitor
|
||||
|
||||
MODEL_TUNING["Model Fine-tuning<br/>• Re-rank model updates<br/>• Prompt optimization<br/>• Chunk size tuning<br/>Cycle: monthly"]:::process
|
||||
end
|
||||
|
||||
USER_INPUT -->|"Rate<br/>Answer"| USER_FEEDBACK
|
||||
USER_FEEDBACK --> FEEDBACK_ANALYSIS
|
||||
FEEDBACK_ANALYSIS --> MODEL_TUNING
|
||||
MODEL_TUNING -.->|"Improve"| RERANKER
|
||||
|
||||
%% =====================================
|
||||
%% ANNOTATIONS
|
||||
%% =====================================
|
||||
|
||||
SCALE_NOTE["📈 SCALABILITY:<br/>• Vector DB: Horizontal sharding<br/>• API: K8s auto-scaling (HPA)<br/>• Workers: Queue-based scaling<br/>• Cache: Redis cluster<br/>Target: 100k+ docs, 1k+ QPS"]:::monitor
|
||||
|
||||
PERF_NOTE["⚡ PERFORMANCE TARGETS:<br/>• Query latency: <3s (p95)<br/>• Vector search: <100ms<br/>• LLM generation: <2s<br/>• Cache hit rate: >80%<br/>• Throughput: 1000 QPS"]:::cache
|
||||
|
||||
QUALITY_NOTE["✅ QUALITY ASSURANCE:<br/>• Re-ranking for precision<br/>• Source attribution<br/>• Confidence scoring<br/>• Fallback responses<br/>• Human feedback loop"]:::process
|
||||
|
||||
SCALE_NOTE -.-> QDRANT
|
||||
PERF_NOTE -.-> REDIS_CACHE
|
||||
QUALITY_NOTE -.-> RERANKER
|
||||
```
|
||||
|
||||
### Pipeline RAG
|
||||
|
||||
**1. Ingestion Pipeline (Offline)**
|
||||
|
||||
- Parsing documentazione MkDocs
|
||||
- Chunking intelligente (512 token, overlap 128)
|
||||
- Generazione embeddings (all-MiniLM-L6-v2)
|
||||
- Storage in Vector Database (Qdrant cluster)
|
||||
|
||||
**2. Query Pipeline (Real-time)**
|
||||
|
||||
- Embedding della query utente
|
||||
- Hybrid search (semantic + keyword)
|
||||
- Re-ranking con cross-encoder
|
||||
- Context assembly per LLM
|
||||
|
||||
**3. Generation**
|
||||
|
||||
- LLM locale (Qwen) con RAG context
|
||||
- Source attribution automatica
|
||||
- Streaming delle risposte
|
||||
|
||||
**4. Scaling Strategy**
|
||||
|
||||
- Vector DB sharding automatico
|
||||
- API instances con auto-scaling K8s
|
||||
- Redis cluster per caching multi-livello
|
||||
- Load balancing con Nginx
|
||||
|
||||
---
|
||||
|
||||
## 📧 Contatti
|
||||
|
||||
- **Team**: Infrastructure Documentation Team
|
||||
- **Email**: infra-docs@company.com
|
||||
- **GitLab**: https://gitlab.com/company/infra-docs-automation
|
||||
|
||||
---
|
||||
|
||||
**Versione**: 1.0.0
|
||||
**Ultimo aggiornamento**: 2025-10-28
|
||||
Reference in New Issue
Block a user