Add scheme.md
Some checks failed
Build / Build & Push Docker Images (api) (push) Has been cancelled
Build / Build & Push Docker Images (chat) (push) Has been cancelled
Build / Build & Push Docker Images (frontend) (push) Has been cancelled
Build / Build & Push Docker Images (worker) (push) Has been cancelled
Build / Code Quality Checks (push) Has been cancelled

This commit is contained in:
2025-10-28 11:16:45 +00:00
parent 2719cfff59
commit 5b94e0a046

374
scheme.md Normal file
View File

@@ -0,0 +1,374 @@
# 📚 Automated Infrastructure Documentation System
Sistema automatizzato per la generazione e mantenimento della documentazione tecnica dell'infrastruttura aziendale tramite LLM locale con validazione umana e pubblicazione GitOps.
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python 3.11+](https://img.shields.io/badge/python-3.11+-blue.svg)](https://www.python.org/downloads/)
[![Kafka](https://img.shields.io/badge/Kafka-3.6+-red.svg)](https://kafka.apache.org/)
## 📋 Indice
- [Overview](#overview)
- [Architettura](#architettura)
- [Schema Architetturale](#schema-architetturale)
- [Schema Tecnico](#schema-tecnico)
- [Contatti](#contatti)
## 🎯 Overview
Sistema progettato per **automatizzare la creazione e l'aggiornamento della documentazione tecnica** di sistemi infrastrutturali complessi (VMware, Kubernetes, Linux, Cisco, ecc.) utilizzando un Large Language Model locale (Qwen).
### Caratteristiche Principali
-**Raccolta dati asincrona** da molteplici sistemi infrastrutturali
-**Isolamento di sicurezza**: LLM non accede mai ai sistemi live
-**Event-driven architecture** con Apache Kafka
-**LLM locale on-premise** (Qwen) tramite MCP Server
-**Human-in-the-loop validation** con workflow GitOps
-**CI/CD automatizzato** per pubblicazione
## 🏗️ Architettura
Il sistema è suddiviso in **3 flussi principali**:
1. **Raccolta Dati (Background)**: Connettori interrogano periodicamente i sistemi infrastrutturali tramite API e pubblicano i dati su Kafka
2. **Generazione Documentazione (On-Demand)**: LLM locale (Qwen) genera markdown interrogando Kafka/Redis tramite MCP Server
3. **Validazione e Pubblicazione (GitOps)**: Review umana su Pull Request e deploy automatico via CI/CD
> **Principio di Sicurezza**: L'LLM non ha mai accesso diretto ai sistemi infrastrutturali. Tutti i dati passano attraverso Kafka/Redis.
---
## 📊 Schema Architetturale
### Management View
Schema semplificato per presentazioni executive e management.
<!--
===========================================
INCOLLA QUI LO SCHEMA ARCHITETTURALE
(quello per il management, più semplice)
===========================================
-->
```mermaid
graph TB
%% Styling
classDef infrastructure fill:#e1f5ff,stroke:#01579b,stroke-width:3px,color:#333
classDef kafka fill:#fff3e0,stroke:#e65100,stroke-width:3px,color:#333
classDef cache fill:#f3e5f5,stroke:#4a148c,stroke-width:3px,color:#333
classDef llm fill:#e8f5e9,stroke:#1b5e20,stroke-width:3px,color:#333
classDef git fill:#fce4ec,stroke:#880e4f,stroke-width:3px,color:#333
classDef human fill:#fff9c4,stroke:#f57f17,stroke-width:3px,color:#333
%% ========================================
%% FLUSSO 1: RACCOLTA DATI (Background)
%% ========================================
INFRA[("🏢 SISTEMI<br/>INFRASTRUTTURALI<br/><br/>VMware | K8s | Linux | Cisco")]:::infrastructure
CONN["🔌 CONNETTORI<br/>Polling Automatico"]:::infrastructure
KAFKA[("📨 APACHE KAFKA<br/>Message Broker<br/>+ Persistenza")]:::kafka
CONSUMER["⚙️ KAFKA CONSUMER<br/>Processor Service"]:::kafka
REDIS[("💾 REDIS CACHE<br/>(Opzionale)<br/>Performance Layer")]:::cache
INFRA -->|"API Polling<br/>Continuo"| CONN
CONN -->|"Publish<br/>Eventi"| KAFKA
KAFKA -->|"Consume<br/>Stream"| CONSUMER
CONSUMER -.->|"Update<br/>Opzionale"| REDIS
%% ========================================
%% FLUSSO 2: GENERAZIONE DOCUMENTAZIONE
%% ========================================
USER["👤 UTENTE<br/>Richiesta Doc"]:::human
LLM["🤖 LLM ENGINE<br/>Claude / GPT"]:::llm
MCP["🔧 MCP SERVER<br/>API Control Platform"]:::llm
DOC["📄 DOCUMENTO<br/>Markdown Generato"]:::llm
USER -->|"1. Prompt"| LLM
LLM -->|"2. Tool Call"| MCP
MCP -->|"3a. Query"| KAFKA
MCP -.->|"3b. Query<br/>Fast"| REDIS
KAFKA -->|"4a. Dati"| MCP
REDIS -.->|"4b. Dati"| MCP
MCP -->|"5. Context"| LLM
LLM -->|"6. Genera"| DOC
%% ========================================
%% FLUSSO 3: VALIDAZIONE E PUBBLICAZIONE
%% ========================================
GIT["📦 GITLAB<br/>Repository"]:::git
PR["🔀 PULL REQUEST<br/>Review Automatica"]:::git
TECH["👨‍💼 TEAM TECNICO<br/>Validazione Umana"]:::human
PIPELINE["⚡ CI/CD PIPELINE<br/>GitLab Runner"]:::git
MKDOCS["📚 MKDOCS<br/>Static Site Generator"]:::git
WEB["🌐 DOCUMENTAZIONE<br/>GitLab Pages<br/>(Pubblicata)"]:::git
DOC -->|"Push +<br/>Branch"| GIT
GIT -->|"Crea"| PR
PR -->|"Notifica"| TECH
TECH -->|"Approva +<br/>Merge"| GIT
GIT -->|"Trigger"| PIPELINE
PIPELINE -->|"Build"| MKDOCS
MKDOCS -->|"Deploy"| WEB
%% ========================================
%% ANNOTAZIONI SICUREZZA
%% ========================================
SECURITY["🔒 SICUREZZA<br/>LLM isolato dai sistemi live"]:::human
PERF["⚡ PERFORMANCE<br/>Cache Redis opzionale"]:::cache
LLM -.->|"NESSUN<br/>ACCESSO"| INFRA
SECURITY -.-> LLM
PERF -.-> REDIS
```
---
## 🔧 Schema Tecnico
### Implementation View
Schema dettagliato per il team tecnico con specifiche implementative.
<!--
===========================================
INCOLLA QUI LO SCHEMA TECNICO DETTAGLIATO
(quello con tutti i dettagli per gli sviluppatori)
===========================================
-->
```mermaid
graph TB
%% Styling tecnico
classDef infra fill:#e1f5ff,stroke:#01579b,stroke-width:2px,color:#333,font-size:11px
classDef connector fill:#e3f2fd,stroke:#1565c0,stroke-width:2px,color:#333,font-size:11px
classDef kafka fill:#fff3e0,stroke:#e65100,stroke-width:2px,color:#333,font-size:11px
classDef cache fill:#f3e5f5,stroke:#4a148c,stroke-width:2px,color:#333,font-size:11px
classDef llm fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px,color:#333,font-size:11px
classDef git fill:#fce4ec,stroke:#880e4f,stroke-width:2px,color:#333,font-size:11px
classDef monitor fill:#fff8e1,stroke:#f57f17,stroke-width:2px,color:#333,font-size:11px
%% =====================================
%% LAYER 1: SISTEMI SORGENTE
%% =====================================
subgraph SOURCES["🏢 INFRASTRUCTURE SOURCES"]
VCENTER["VMware vCenter<br/>API: vSphere REST 7.0+<br/>Port: 443/HTTPS<br/>Auth: API Token"]:::infra
K8S_API["Kubernetes API<br/>API: v1.28+<br/>Port: 6443/HTTPS<br/>Auth: ServiceAccount + RBAC"]:::infra
LINUX["Linux Servers<br/>Protocol: SSH/Ansible<br/>Port: 22<br/>Auth: SSH Keys"]:::infra
CISCO["Cisco Devices<br/>Protocol: NETCONF/RESTCONF<br/>Port: 830/443<br/>Auth: AAA"]:::infra
end
%% =====================================
%% LAYER 2: CONNETTORI
%% =====================================
subgraph CONNECTORS["🔌 DATA COLLECTORS (Python/Go)"]
CONN_VM["VMware Collector<br/>Lang: Python 3.11<br/>Lib: pyvmomi<br/>Schedule: */15 * * * *<br/>Output: JSON"]:::connector
CONN_K8S["K8s Collector<br/>Lang: Python 3.11<br/>Lib: kubernetes-client<br/>Schedule: */5 * * * *<br/>Resources: pods,svc,ing,deploy"]:::connector
CONN_LNX["Linux Collector<br/>Lang: Python 3.11<br/>Lib: paramiko/ansible<br/>Schedule: */30 * * * *<br/>Data: sysinfo,packages,services"]:::connector
CONN_CSC["Cisco Collector<br/>Lang: Python 3.11<br/>Lib: ncclient<br/>Schedule: */30 * * * *<br/>Data: interfaces,routing,vlans"]:::connector
end
VCENTER -->|"GET /api/vcenter/vm"| CONN_VM
K8S_API -->|"kubectl proxy<br/>API calls"| CONN_K8S
LINUX -->|"SSH batch<br/>commands"| CONN_LNX
CISCO -->|"NETCONF<br/>get-config"| CONN_CSC
%% =====================================
%% LAYER 3: MESSAGE BROKER
%% =====================================
subgraph MESSAGING["📨 KAFKA CLUSTER (3 brokers)"]
KAFKA_TOPICS["Kafka Topics:<br/>• vmware.inventory (P:6, R:3)<br/>• k8s.resources (P:12, R:3)<br/>• linux.systems (P:3, R:3)<br/>• cisco.network (P:3, R:3)<br/>Retention: 7 days<br/>Format: JSON + Schema Registry"]:::kafka
SCHEMA["Schema Registry<br/>Avro Schemas<br/>Versioning enabled<br/>Port: 8081"]:::kafka
end
CONN_VM -->|"Producer<br/>Batch 100 msg"| KAFKA_TOPICS
CONN_K8S -->|"Producer<br/>Batch 100 msg"| KAFKA_TOPICS
CONN_LNX -->|"Producer<br/>Batch 50 msg"| KAFKA_TOPICS
CONN_CSC -->|"Producer<br/>Batch 50 msg"| KAFKA_TOPICS
KAFKA_TOPICS <--> SCHEMA
%% =====================================
%% LAYER 4: PROCESSING & CACHE
%% =====================================
subgraph PROCESSING["⚙️ STREAM PROCESSING"]
CONSUMER_GRP["Kafka Consumer Group<br/>Group ID: doc-consumers<br/>Lang: Python 3.11<br/>Lib: kafka-python<br/>Workers: 6<br/>Commit: auto (5s)"]:::kafka
PROCESSOR["Data Processor<br/>• Validation<br/>• Transformation<br/>• Enrichment<br/>• Deduplication"]:::kafka
end
KAFKA_TOPICS -->|"Subscribe<br/>offset management"| CONSUMER_GRP
CONSUMER_GRP --> PROCESSOR
subgraph STORAGE["💾 CACHE LAYER (Optional)"]
REDIS_CLUSTER["Redis Cluster<br/>Mode: Cluster (6 nodes)<br/>Port: 6379<br/>Persistence: RDB + AOF<br/>Memory: 64GB<br/>Eviction: allkeys-lru"]:::cache
REDIS_KEYS["Key Structure:<br/>• vmware:vcenter-id:vms<br/>• k8s:cluster:namespace:resource<br/>• linux:hostname:info<br/>• cisco:device-id:config<br/>TTL: 1-24h based on type"]:::cache
end
PROCESSOR -.->|"SET/HSET<br/>Pipeline batch"| REDIS_CLUSTER
REDIS_CLUSTER --> REDIS_KEYS
%% =====================================
%% LAYER 5: LLM & MCP
%% =====================================
subgraph LLM_LAYER["🤖 AI GENERATION LAYER"]
LLM_ENGINE["LLM Engine<br/>Model: Claude Sonnet 4 / GPT-4<br/>API: Anthropic/OpenAI<br/>Temp: 0.3<br/>Max Tokens: 4096<br/>Timeout: 120s"]:::llm
MCP_SERVER["MCP Server<br/>Lang: TypeScript/Node.js<br/>Port: 3000<br/>Protocol: JSON-RPC 2.0<br/>Auth: JWT tokens"]:::llm
MCP_TOOLS["MCP Tools:<br/>• getVMwareInventory(vcenter)<br/>• getK8sResources(cluster,ns,type)<br/>• getLinuxSystemInfo(hostname)<br/>• getCiscoConfig(device,section)<br/>• queryTimeRange(start,end)<br/>Return: JSON + Metadata"]:::llm
end
LLM_ENGINE <-->|"Tool calls<br/>JSON-RPC"| MCP_SERVER
MCP_SERVER --> MCP_TOOLS
MCP_TOOLS -->|"1. Query Kafka Consumer API<br/>GET /api/v1/data"| CONSUMER_GRP
MCP_TOOLS -.->|"2. Fallback Redis<br/>MGET/HGETALL"| REDIS_CLUSTER
CONSUMER_GRP -->|"JSON Response<br/>+ Timestamps"| MCP_TOOLS
REDIS_CLUSTER -.->|"Cached JSON<br/>Fast response"| MCP_TOOLS
MCP_TOOLS -->|"Structured Data<br/>+ Context"| LLM_ENGINE
subgraph OUTPUT["📝 DOCUMENT GENERATION"]
TEMPLATE["Template Engine<br/>Format: Jinja2<br/>Templates: markdown/*.j2<br/>Variables: from LLM"]:::llm
MARKDOWN["Markdown Output<br/>Format: CommonMark<br/>Metadata: YAML frontmatter<br/>Assets: diagrams in mermaid"]:::llm
VALIDATOR["Doc Validator<br/>• Markdown linting<br/>• Link checking<br/>• Schema validation"]:::llm
end
LLM_ENGINE --> TEMPLATE
TEMPLATE --> MARKDOWN
MARKDOWN --> VALIDATOR
%% =====================================
%% LAYER 6: GITOPS
%% =====================================
subgraph GITOPS["🔄 GITOPS WORKFLOW"]
GIT_REPO["GitLab Repository<br/>URL: gitlab.com/docs/infra<br/>Branch strategy: main + feature/*<br/>Protected: main (require approval)"]:::git
GIT_API["GitLab API<br/>API: v4<br/>Auth: Project Access Token<br/>Permissions: api, write_repo"]:::git
PR_AUTO["Automated PR Creator<br/>Lang: Python 3.11<br/>Lib: python-gitlab<br/>Template: .gitlab/merge_request.md"]:::git
end
VALIDATOR -->|"git add/commit/push"| GIT_REPO
GIT_REPO <--> GIT_API
GIT_API --> PR_AUTO
REVIEWER["👨‍💼 Technical Reviewer<br/>Role: Maintainer/Owner<br/>Review: diff + validation<br/>Approve: required (min 1)"]:::monitor
PR_AUTO -->|"Notification<br/>Email + Slack"| REVIEWER
REVIEWER -->|"Merge to main"| GIT_REPO
%% =====================================
%% LAYER 7: CI/CD & PUBLISH
%% =====================================
subgraph CICD["⚡ CI/CD PIPELINE"]
GITLAB_CI["GitLab CI/CD<br/>Runner: docker<br/>Image: python:3.11-alpine<br/>Stages: build, test, deploy"]:::git
PIPELINE_JOBS["Pipeline Jobs:<br/>1. lint (markdownlint-cli)<br/>2. build (mkdocs build)<br/>3. test (link-checker)<br/>4. deploy (rsync/s3)"]:::git
MKDOCS_CFG["MkDocs Config<br/>Theme: material<br/>Plugins: search, tags, mermaid<br/>Extensions: admonition, codehilite"]:::git
end
GIT_REPO -->|"on: push to main<br/>Webhook trigger"| GITLAB_CI
GITLAB_CI --> PIPELINE_JOBS
PIPELINE_JOBS --> MKDOCS_CFG
subgraph PUBLISH["🌐 PUBLICATION"]
STATIC_SITE["Static Site<br/>Generator: MkDocs<br/>Output: HTML/CSS/JS<br/>Assets: optimized images"]:::git
CDN["GitLab Pages / S3 + CloudFront<br/>URL: docs.company.com<br/>SSL: Let's Encrypt<br/>Cache: 1h"]:::git
SEARCH["Search Index<br/>Engine: Algolia/Meilisearch<br/>Update: on publish<br/>API: REST"]:::git
end
MKDOCS_CFG -->|"mkdocs build<br/>--strict"| STATIC_SITE
STATIC_SITE --> CDN
STATIC_SITE --> SEARCH
%% =====================================
%% LAYER 8: MONITORING & OBSERVABILITY
%% =====================================
subgraph OBSERVABILITY["📊 MONITORING & LOGGING"]
PROMETHEUS["Prometheus<br/>Metrics: collector lag, cache hit/miss<br/>Scrape: 30s<br/>Retention: 15d"]:::monitor
GRAFANA["Grafana Dashboards<br/>• Kafka metrics<br/>• Redis performance<br/>• LLM response times<br/>• Pipeline success rate"]:::monitor
ELK["ELK Stack<br/>Logs: all components<br/>Index: daily rotation<br/>Retention: 30d"]:::monitor
ALERTS["Alerting<br/>• Connector failures<br/>• Kafka lag > 10k<br/>• Redis OOM<br/>• Pipeline failures<br/>Channel: Slack + PagerDuty"]:::monitor
end
CONN_VM -.->|"metrics"| PROMETHEUS
CONN_K8S -.->|"metrics"| PROMETHEUS
KAFKA_TOPICS -.->|"metrics"| PROMETHEUS
REDIS_CLUSTER -.->|"metrics"| PROMETHEUS
MCP_SERVER -.->|"metrics"| PROMETHEUS
GITLAB_CI -.->|"metrics"| PROMETHEUS
PROMETHEUS --> GRAFANA
CONN_VM -.->|"logs"| ELK
CONSUMER_GRP -.->|"logs"| ELK
MCP_SERVER -.->|"logs"| ELK
GITLAB_CI -.->|"logs"| ELK
GRAFANA --> ALERTS
%% =====================================
%% SECURITY ANNOTATIONS
%% =====================================
SEC1["🔒 SECURITY:<br/>• All APIs use TLS 1.3<br/>• Secrets in Vault/K8s Secrets<br/>• Network: private VPC<br/>• LLM has NO direct access"]:::monitor
SEC2["🔐 AUTHENTICATION:<br/>• API Tokens rotated 90d<br/>• RBAC enforced<br/>• Audit logs enabled<br/>• MFA required for Git"]:::monitor
SEC1 -.-> MCP_SERVER
SEC2 -.-> GIT_REPO
```
---
## 📧 Contatti
- **Team**: Infrastructure Documentation Team
- **Email**: infra-docs@company.com
- **GitLab**: https://gitlab.com/company/infra-docs-automation
---
**Versione**: 1.0.0
**Ultimo aggiornamento**: 2025-10-28