feat: Implement CLI tool, Celery workers, and VMware collector
Some checks failed
CI/CD Pipeline / Generate Documentation (push) Successful in 4m57s
CI/CD Pipeline / Lint Code (push) Successful in 5m33s
CI/CD Pipeline / Run Tests (push) Successful in 4m20s
CI/CD Pipeline / Security Scanning (push) Successful in 4m32s
CI/CD Pipeline / Build and Push Docker Images (chat) (push) Failing after 49s
CI/CD Pipeline / Build and Push Docker Images (frontend) (push) Failing after 48s
CI/CD Pipeline / Build and Push Docker Images (worker) (push) Failing after 46s
CI/CD Pipeline / Build and Push Docker Images (api) (push) Failing after 40s
CI/CD Pipeline / Deploy to Staging (push) Has been skipped
CI/CD Pipeline / Deploy to Production (push) Has been skipped

Complete implementation of core MVP components:

CLI Tool (src/datacenter_docs/cli.py):
- 11 commands for system management (serve, worker, init-db, generate, etc.)
- Auto-remediation policy management (enable/disable/status)
- System statistics and monitoring
- Rich formatted output with tables and panels

Celery Workers (src/datacenter_docs/workers/):
- celery_app.py with 4 specialized queues (documentation, auto_remediation, data_collection, maintenance)
- tasks.py with 8 async tasks integrated with MongoDB/Beanie
- Celery Beat scheduling (6h docs, 1h data collection, 15m metrics, 2am cleanup)
- Rate limiting (10 auto-remediation/h) and timeout configuration
- Task lifecycle signals and comprehensive logging

VMware Collector (src/datacenter_docs/collectors/):
- BaseCollector abstract class with full workflow (connect/collect/validate/store/disconnect)
- VMwareCollector for vSphere infrastructure data collection
- Collects VMs, ESXi hosts, clusters, datastores, networks with statistics
- MCP client integration with mock data fallback for development
- MongoDB storage via AuditLog and data validation

Documentation & Configuration:
- Updated README.md with CLI commands and Workers sections
- Updated TODO.md with project status (55% completion)
- Added CLAUDE.md with comprehensive project instructions
- Added Docker compose setup for development environment

Project Status:
- Completion: 50% -> 55%
- MVP Milestone: 80% complete (only Infrastructure Generator remaining)
- Estimated time to MVP: 1-2 days

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
2025-10-19 22:29:59 +02:00
parent 541222ad68
commit 52655e9eee
34 changed files with 5246 additions and 456 deletions

View File

@@ -0,0 +1,296 @@
"""
Generic LLM Client using OpenAI-compatible API
This client works with:
- OpenAI
- Anthropic (via OpenAI-compatible endpoint)
- LLMStudio
- Open-WebUI
- Ollama
- LocalAI
- Any other OpenAI-compatible provider
"""
import logging
from typing import Any, Dict, List, Optional
from openai import AsyncOpenAI
from .config import get_settings
logger = logging.getLogger(__name__)
class LLMClient:
"""
Generic LLM client using OpenAI-compatible API standard.
This allows switching between different LLM providers without code changes,
just by updating configuration (base_url, api_key, model).
Examples:
# OpenAI
LLM_BASE_URL=https://api.openai.com/v1
LLM_MODEL=gpt-4-turbo-preview
# Anthropic (via OpenAI-compatible endpoint)
LLM_BASE_URL=https://api.anthropic.com/v1
LLM_MODEL=claude-sonnet-4-20250514
# LLMStudio
LLM_BASE_URL=http://localhost:1234/v1
LLM_MODEL=local-model
# Open-WebUI
LLM_BASE_URL=http://localhost:8080/v1
LLM_MODEL=llama3
"""
def __init__(
self,
base_url: Optional[str] = None,
api_key: Optional[str] = None,
model: Optional[str] = None,
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
):
"""
Initialize LLM client with OpenAI-compatible API.
Args:
base_url: Base URL of the API endpoint (e.g., https://api.openai.com/v1)
api_key: API key for authentication
model: Model name to use (e.g., gpt-4, claude-sonnet-4, llama3)
temperature: Sampling temperature (0.0-1.0)
max_tokens: Maximum tokens to generate
"""
settings = get_settings()
# Use provided values or fall back to settings
self.base_url = base_url or settings.LLM_BASE_URL
self.api_key = api_key or settings.LLM_API_KEY
self.model = model or settings.LLM_MODEL
self.temperature = temperature if temperature is not None else settings.LLM_TEMPERATURE
self.max_tokens = max_tokens or settings.LLM_MAX_TOKENS
# Initialize AsyncOpenAI client
self.client = AsyncOpenAI(base_url=self.base_url, api_key=self.api_key)
logger.info(
f"Initialized LLM client: base_url={self.base_url}, model={self.model}"
)
async def chat_completion(
self,
messages: List[Dict[str, str]],
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
stream: bool = False,
**kwargs: Any,
) -> Dict[str, Any]:
"""
Generate chat completion using OpenAI-compatible API.
Args:
messages: List of messages [{"role": "user", "content": "..."}]
temperature: Override default temperature
max_tokens: Override default max_tokens
stream: Enable streaming response
**kwargs: Additional parameters for the API
Returns:
Response with generated text and metadata
"""
try:
response = await self.client.chat.completions.create(
model=self.model,
messages=messages, # type: ignore[arg-type]
temperature=temperature or self.temperature,
max_tokens=max_tokens or self.max_tokens,
stream=stream,
**kwargs,
)
if stream:
# Return generator for streaming
return {"stream": response} # type: ignore[dict-item]
# Extract text from first choice
message = response.choices[0].message
content = message.content or ""
return {
"content": content,
"model": response.model,
"usage": {
"prompt_tokens": response.usage.prompt_tokens if response.usage else 0,
"completion_tokens": (
response.usage.completion_tokens if response.usage else 0
),
"total_tokens": response.usage.total_tokens if response.usage else 0,
},
"finish_reason": response.choices[0].finish_reason,
}
except Exception as e:
logger.error(f"LLM API call failed: {e}")
raise
async def generate_with_system(
self,
system_prompt: str,
user_prompt: str,
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
**kwargs: Any,
) -> str:
"""
Generate completion with system and user prompts.
Args:
system_prompt: System instruction
user_prompt: User message
temperature: Override default temperature
max_tokens: Override default max_tokens
**kwargs: Additional API parameters
Returns:
Generated text content
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
response = await self.chat_completion(
messages=messages, temperature=temperature, max_tokens=max_tokens, **kwargs
)
return response["content"]
async def generate_json(
self,
messages: List[Dict[str, str]],
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> Dict[str, Any]:
"""
Generate JSON response (if provider supports response_format).
Args:
messages: List of messages
temperature: Override default temperature
max_tokens: Override default max_tokens
Returns:
Parsed JSON response
"""
import json
try:
# Try with response_format if supported
response = await self.chat_completion(
messages=messages,
temperature=temperature or 0.3, # Lower temp for structured output
max_tokens=max_tokens,
response_format={"type": "json_object"},
)
except Exception as e:
logger.warning(f"response_format not supported, using plain completion: {e}")
# Fallback to plain completion
response = await self.chat_completion(
messages=messages,
temperature=temperature or 0.3,
max_tokens=max_tokens,
)
# Parse JSON from content
content = response["content"]
try:
return json.loads(content)
except json.JSONDecodeError as e:
logger.error(f"Failed to parse JSON response: {e}")
logger.debug(f"Raw content: {content}")
raise ValueError(f"LLM did not return valid JSON: {content[:200]}...")
async def generate_stream(
self,
messages: List[Dict[str, str]],
temperature: Optional[float] = None,
max_tokens: Optional[int] = None,
) -> Any:
"""
Generate streaming completion.
Args:
messages: List of messages
temperature: Override default temperature
max_tokens: Override default max_tokens
Yields:
Text chunks as they arrive
"""
response = await self.chat_completion(
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=True,
)
async for chunk in response["stream"]: # type: ignore[union-attr]
if chunk.choices and chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
# Singleton instance
_llm_client: Optional[LLMClient] = None
def get_llm_client() -> LLMClient:
"""Get or create singleton LLM client instance."""
global _llm_client
if _llm_client is None:
_llm_client = LLMClient()
return _llm_client
# Example usage
async def example_usage() -> None:
"""Example of using the LLM client"""
client = get_llm_client()
# Simple completion
messages = [
{"role": "system", "content": "You are a helpful datacenter expert."},
{"role": "user", "content": "Explain what a VLAN is in 2 sentences."},
]
response = await client.chat_completion(messages)
print(f"Response: {response['content']}")
print(f"Tokens used: {response['usage']['total_tokens']}")
# JSON response
json_messages = [
{
"role": "user",
"content": "List 3 common datacenter problems in JSON: {\"problems\": [...]}",
}
]
json_response = await client.generate_json(json_messages)
print(f"JSON: {json_response}")
# Streaming
stream_messages = [{"role": "user", "content": "Count from 1 to 5"}]
print("Streaming: ", end="")
async for chunk in client.generate_stream(stream_messages):
print(chunk, end="", flush=True)
print()
if __name__ == "__main__":
import asyncio
asyncio.run(example_usage())