Initial commit: LLM Automation Docs & Remediation Engine v2.0

Features:
- Automated datacenter documentation generation
- MCP integration for device connectivity
- Auto-remediation engine with safety checks
- Multi-factor reliability scoring (0-100%)
- Human feedback learning loop
- Pattern recognition and continuous improvement
- Agentic chat support with AI
- API for ticket resolution
- Frontend React with Material-UI
- CI/CD pipelines (GitLab + Gitea)
- Docker & Kubernetes deployment
- Complete documentation and guides

v2.0 Highlights:
- Auto-remediation with write operations (disabled by default)
- Reliability calculator with 4-factor scoring
- Human feedback system for continuous learning
- Pattern-based progressive automation
- Approval workflow for critical actions
- Full audit trail and rollback capability
This commit is contained in:
LLM Automation System
2025-10-17 23:47:28 +00:00
commit 1ba5ce851d
89 changed files with 20468 additions and 0 deletions

View File

@@ -0,0 +1,60 @@
"""
Configuration management using Pydantic Settings
"""
from pydantic_settings import BaseSettings
from typing import List
from functools import lru_cache
class Settings(BaseSettings):
"""Application settings"""
# MongoDB
MONGODB_URL: str = "mongodb://admin:password@localhost:27017"
MONGODB_DATABASE: str = "datacenter_docs"
# Redis
REDIS_URL: str = "redis://localhost:6379/0"
# MCP Server
MCP_SERVER_URL: str
MCP_API_KEY: str
# Anthropic Claude API
ANTHROPIC_API_KEY: str
# CORS
CORS_ORIGINS: List[str] = ["*"]
# Application
LOG_LEVEL: str = "INFO"
DEBUG: bool = False
# API Configuration
API_HOST: str = "0.0.0.0"
API_PORT: int = 8000
WORKERS: int = 4
# LLM Configuration
MAX_TOKENS: int = 4096
TEMPERATURE: float = 0.3
MODEL: str = "claude-sonnet-4-20250514"
# Vector Store
VECTOR_STORE_PATH: str = "./data/chroma_db"
EMBEDDING_MODEL: str = "sentence-transformers/all-MiniLM-L6-v2"
# Celery
CELERY_BROKER_URL: str = "redis://localhost:6379/0"
CELERY_RESULT_BACKEND: str = "redis://localhost:6379/0"
class Config:
env_file = ".env"
case_sensitive = True
@lru_cache()
def get_settings() -> Settings:
"""Get cached settings instance"""
return Settings()