Initial commit: LLM Automation Docs & Remediation Engine v2.0
Features: - Automated datacenter documentation generation - MCP integration for device connectivity - Auto-remediation engine with safety checks - Multi-factor reliability scoring (0-100%) - Human feedback learning loop - Pattern recognition and continuous improvement - Agentic chat support with AI - API for ticket resolution - Frontend React with Material-UI - CI/CD pipelines (GitLab + Gitea) - Docker & Kubernetes deployment - Complete documentation and guides v2.0 Highlights: - Auto-remediation with write operations (disabled by default) - Reliability calculator with 4-factor scoring - Human feedback system for continuous learning - Pattern-based progressive automation - Approval workflow for critical actions - Full audit trail and rollback capability
This commit is contained in:
751
AUTO_REMEDIATION_GUIDE.md
Normal file
751
AUTO_REMEDIATION_GUIDE.md
Normal file
@@ -0,0 +1,751 @@
|
||||
# 🤖 Auto-Remediation System - Complete Documentation
|
||||
|
||||
## 📋 Table of Contents
|
||||
|
||||
1. [Overview](#overview)
|
||||
2. [Safety First Design](#safety-first-design)
|
||||
3. [Reliability Scoring System](#reliability-scoring-system)
|
||||
4. [Human Feedback Loop](#human-feedback-loop)
|
||||
5. [Decision Engine](#decision-engine)
|
||||
6. [Auto-Remediation Execution](#auto-remediation-execution)
|
||||
7. [Pattern Learning](#pattern-learning)
|
||||
8. [API Usage](#api-usage)
|
||||
9. [Configuration](#configuration)
|
||||
10. [Monitoring & Analytics](#monitoring--analytics)
|
||||
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The **Auto-Remediation System** enables AI to autonomously resolve infrastructure issues by executing write operations on your systems. This is a **production-grade** implementation with extensive safety checks, human oversight, and continuous learning.
|
||||
|
||||
### Key Features
|
||||
|
||||
✅ **Safety-First**: Auto-remediation **disabled by default**
|
||||
✅ **Reliability Scoring**: Multi-factor confidence calculation (0-100%)
|
||||
✅ **Human Feedback**: Continuous learning from user feedback
|
||||
✅ **Pattern Recognition**: Learns from similar issues
|
||||
✅ **Approval Workflow**: Critical actions require human approval
|
||||
✅ **Full Audit Trail**: Every action logged with rollback capability
|
||||
✅ **Progressive Automation**: Decisions improve over time based on success rate
|
||||
|
||||
---
|
||||
|
||||
## Safety First Design
|
||||
|
||||
### 🛡️ Default State: DISABLED
|
||||
|
||||
```python
|
||||
# Example: Ticket submission
|
||||
{
|
||||
"ticket_id": "INC-001",
|
||||
"description": "Problem description",
|
||||
"enable_auto_remediation": false # ← DEFAULT: Disabled
|
||||
}
|
||||
```
|
||||
|
||||
**Auto-remediation must be explicitly enabled for each ticket.**
|
||||
|
||||
### Safety Layers
|
||||
|
||||
1. **Explicit Enablement**: Must opt-in per ticket
|
||||
2. **Reliability Thresholds**: Minimum confidence required
|
||||
3. **Action Classification**: Safe vs. Critical operations
|
||||
4. **Pre-execution Checks**: System health, backups, rate limits
|
||||
5. **Human Approval**: Required for low-reliability or critical actions
|
||||
6. **Post-execution Validation**: Verify success
|
||||
7. **Rollback Capability**: Undo on failure
|
||||
|
||||
### Action Classification
|
||||
|
||||
```python
|
||||
class RemediationAction(str, enum.Enum):
|
||||
READ_ONLY = "read_only" # No changes (default)
|
||||
SAFE_WRITE = "safe_write" # Non-destructive (restart, clear cache)
|
||||
CRITICAL_WRITE = "critical_write" # Potentially destructive (delete, modify)
|
||||
```
|
||||
|
||||
**Critical actions ALWAYS require human approval**, regardless of confidence.
|
||||
|
||||
---
|
||||
|
||||
## Reliability Scoring System
|
||||
|
||||
### Multi-Factor Calculation
|
||||
|
||||
The reliability score (0-100%) is calculated from **4 components**:
|
||||
|
||||
```python
|
||||
Reliability Score = (
|
||||
AI Confidence × 25% + # Model's own confidence
|
||||
Human Feedback × 30% + # Historical feedback quality
|
||||
Success History × 25% + # Past resolution success rate
|
||||
Pattern Match × 20% # Similarity to known patterns
|
||||
)
|
||||
```
|
||||
|
||||
### Component Details
|
||||
|
||||
#### 1. AI Confidence (25%)
|
||||
- Direct from Claude Sonnet 4.5
|
||||
- Based on documentation quality and analysis certainty
|
||||
- Range: 0-1 converted to 0-100%
|
||||
|
||||
#### 2. Human Feedback (30%)
|
||||
- Weighted by recency (recent feedback = more weight)
|
||||
- Considers:
|
||||
- Positive/Negative/Neutral feedback type
|
||||
- Star ratings (1-5)
|
||||
- Resolution accuracy
|
||||
- Action effectiveness
|
||||
|
||||
```python
|
||||
feedback_score = (
|
||||
positive_feedback_rate × 100 +
|
||||
average_rating / 5 × 100
|
||||
) / 2
|
||||
```
|
||||
|
||||
#### 3. Historical Success (25%)
|
||||
- Success rate in same category (last 6 months)
|
||||
- Formula: `resolved_tickets / total_tickets × 100`
|
||||
|
||||
#### 4. Pattern Match (20%)
|
||||
- Similarity to known, resolved patterns
|
||||
- Requires ≥3 similar tickets for pattern
|
||||
- Boosts score if pattern has positive feedback
|
||||
|
||||
### Confidence Levels
|
||||
|
||||
| Score Range | Level | Description |
|
||||
|-------------|-----------|-------------|
|
||||
| 90-100% | Very High | Excellent track record, safe to auto-execute |
|
||||
| 75-89% | High | Good reliability, may require approval |
|
||||
| 60-74% | Medium | Moderate confidence, approval recommended |
|
||||
| 0-59% | Low | Low confidence, manual review required |
|
||||
|
||||
### Example Breakdown
|
||||
|
||||
```json
|
||||
{
|
||||
"overall_score": 87.5,
|
||||
"confidence_level": "high",
|
||||
"breakdown": {
|
||||
"ai_confidence": "92%",
|
||||
"human_validation": "85%",
|
||||
"success_history": "90%",
|
||||
"pattern_recognition": "82%"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Human Feedback Loop
|
||||
|
||||
### Feedback Collection
|
||||
|
||||
After each ticket resolution, collect structured feedback:
|
||||
|
||||
```python
|
||||
{
|
||||
"ticket_id": "INC-001",
|
||||
"feedback_type": "positive|negative|neutral",
|
||||
"rating": 5, # 1-5 stars
|
||||
"was_helpful": true,
|
||||
"resolution_accurate": true,
|
||||
"actions_worked": true,
|
||||
|
||||
# Optional detailed feedback
|
||||
"comment": "Great resolution!",
|
||||
"what_worked": "The restart fixed it",
|
||||
"what_didnt_work": null,
|
||||
"suggestions": "Could add more details",
|
||||
|
||||
# If AI failed, what actually worked?
|
||||
"actual_resolution": "Had to increase memory instead",
|
||||
"actual_actions_taken": [...],
|
||||
"time_to_resolve": 30.0 # minutes
|
||||
}
|
||||
```
|
||||
|
||||
### Feedback Impact
|
||||
|
||||
1. **Immediate**: Updates ticket reliability score
|
||||
2. **Pattern Learning**: Strengthens/weakens pattern eligibility
|
||||
3. **Future Decisions**: Influences similar ticket handling
|
||||
4. **Auto-remediation Eligibility**: Pattern becomes eligible after:
|
||||
- ≥5 occurrences
|
||||
- ≥85% positive feedback rate
|
||||
- ≥85% average reliability score
|
||||
|
||||
### Feedback Analytics
|
||||
|
||||
Track feedback trends:
|
||||
- Positive/Negative/Neutral distribution
|
||||
- Average ratings by category
|
||||
- Resolution accuracy trends
|
||||
- Action success rates
|
||||
|
||||
---
|
||||
|
||||
## Decision Engine
|
||||
|
||||
### Decision Flow
|
||||
|
||||
```
|
||||
1. Check: Auto-remediation enabled for ticket?
|
||||
├─ NO → Skip auto-remediation
|
||||
└─ YES → Continue
|
||||
|
||||
2. Get applicable policy for category
|
||||
├─ No policy → Require manual approval
|
||||
└─ Policy exists → Continue
|
||||
|
||||
3. Classify action risk level
|
||||
├─ READ_ONLY → Low risk
|
||||
├─ SAFE_WRITE → Medium risk
|
||||
└─ CRITICAL_WRITE → High risk
|
||||
|
||||
4. Check confidence & reliability thresholds
|
||||
├─ Below minimum → Reject
|
||||
└─ Above minimum → Continue
|
||||
|
||||
5. Perform safety checks
|
||||
├─ Pre-checks failed → Reject
|
||||
└─ All passed → Continue
|
||||
|
||||
6. Check pattern eligibility
|
||||
├─ Unknown pattern → Require approval
|
||||
└─ Known good pattern → Continue
|
||||
|
||||
7. Determine approval requirement
|
||||
├─ Reliability ≥ auto_approve_threshold → Auto-approve
|
||||
├─ Critical action → Require approval
|
||||
└─ Otherwise → Follow policy
|
||||
|
||||
8. Execute or await approval
|
||||
```
|
||||
|
||||
### Decision Example
|
||||
|
||||
```json
|
||||
{
|
||||
"allowed": true,
|
||||
"action_type": "safe_write",
|
||||
"requires_approval": false,
|
||||
"reasoning": [
|
||||
"All checks passed",
|
||||
"Auto-approved: reliability 92% >= 90%"
|
||||
],
|
||||
"safety_checks": {
|
||||
"time_window_ok": true,
|
||||
"rate_limit_ok": true,
|
||||
"backup_available": true,
|
||||
"system_healthy": true,
|
||||
"all_passed": true
|
||||
},
|
||||
"risk_level": "medium"
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Auto-Remediation Execution
|
||||
|
||||
### Execution Flow
|
||||
|
||||
```python
|
||||
async def execute_remediation(ticket, actions, decision):
|
||||
# 1. Verify decision allows execution
|
||||
if not decision['allowed']:
|
||||
return error
|
||||
|
||||
# 2. Check approval if required
|
||||
if decision['requires_approval']:
|
||||
if not has_approval(ticket):
|
||||
return "awaiting_approval"
|
||||
|
||||
# 3. Execute each action with safety
|
||||
for action in actions:
|
||||
# Pre-execution check
|
||||
pre_check = await check_system_health()
|
||||
if not pre_check.passed:
|
||||
rollback()
|
||||
return error
|
||||
|
||||
# Execute action via MCP
|
||||
result = await execute_via_mcp(action)
|
||||
|
||||
# Post-execution verification
|
||||
post_check = await verify_success()
|
||||
if not post_check.passed:
|
||||
rollback()
|
||||
return error
|
||||
|
||||
# Log action
|
||||
log_remediation(action, result)
|
||||
|
||||
return success
|
||||
```
|
||||
|
||||
### Supported Operations
|
||||
|
||||
#### VMware
|
||||
- `restart_vm` - Graceful VM restart
|
||||
- `snapshot_vm` - Create snapshot
|
||||
- `increase_memory` - Increase VM memory
|
||||
- `increase_cpu` - Add vCPUs
|
||||
|
||||
#### Kubernetes
|
||||
- `restart_pod` - Delete pod (recreate)
|
||||
- `scale_deployment` - Change replica count
|
||||
- `rollback_deployment` - Rollback to previous version
|
||||
|
||||
#### Network
|
||||
- `clear_interface_errors` - Clear interface counters
|
||||
- `enable_port` - Enable disabled port
|
||||
- `restart_interface` - Bounce interface
|
||||
|
||||
#### Storage
|
||||
- `expand_volume` - Increase volume size
|
||||
- `clear_snapshots` - Remove old snapshots
|
||||
|
||||
#### OpenStack
|
||||
- `reboot_instance` - Soft reboot instance
|
||||
- `resize_instance` - Change instance flavor
|
||||
|
||||
### Safety Checks
|
||||
|
||||
**Pre-execution:**
|
||||
- System health check (CPU, memory, disk)
|
||||
- Backup availability verification
|
||||
- Rate limit check (max 10/hour)
|
||||
- Time window check (maintenance hours)
|
||||
|
||||
**Post-execution:**
|
||||
- Resource health verification
|
||||
- Service availability check
|
||||
- Performance metrics validation
|
||||
|
||||
### Rollback
|
||||
|
||||
If any action fails:
|
||||
1. Stop execution immediately
|
||||
2. Log failure details
|
||||
3. Execute rollback procedures
|
||||
4. Notify administrators
|
||||
5. Update ticket status to `partially_remediated`
|
||||
|
||||
---
|
||||
|
||||
## Pattern Learning
|
||||
|
||||
### Pattern Identification
|
||||
|
||||
```python
|
||||
# Generate pattern signature
|
||||
pattern = {
|
||||
'category': 'network',
|
||||
'key_terms': ['vlan', 'connectivity', 'timeout'],
|
||||
'hash': sha256(signature)
|
||||
}
|
||||
```
|
||||
|
||||
### Pattern Statistics
|
||||
|
||||
Tracked for each pattern:
|
||||
- **Occurrence count**: How many times seen
|
||||
- **Success/failure counts**: Resolution outcomes
|
||||
- **Feedback distribution**: Positive/negative/neutral
|
||||
- **Average confidence**: Mean AI confidence
|
||||
- **Average reliability**: Mean reliability score
|
||||
- **Auto-remediation success rate**: % of successful auto-fixes
|
||||
|
||||
### Pattern Eligibility
|
||||
|
||||
Pattern becomes eligible for auto-remediation when:
|
||||
|
||||
```python
|
||||
if (
|
||||
pattern.occurrence_count >= 5 and
|
||||
pattern.positive_feedback_rate >= 0.85 and
|
||||
pattern.avg_reliability_score >= 85.0 and
|
||||
pattern.auto_remediation_success_rate >= 0.85
|
||||
):
|
||||
pattern.eligible_for_auto_remediation = True
|
||||
```
|
||||
|
||||
### Pattern Evolution
|
||||
|
||||
```
|
||||
Initial State:
|
||||
├─ occurrence_count: 1
|
||||
├─ eligible_for_auto_remediation: false
|
||||
└─ Manual resolution only
|
||||
|
||||
After 5+ occurrences with good feedback:
|
||||
├─ occurrence_count: 7
|
||||
├─ positive_feedback_rate: 0.85
|
||||
├─ avg_reliability_score: 87.0
|
||||
├─ eligible_for_auto_remediation: true
|
||||
└─ Can trigger auto-remediation
|
||||
|
||||
After 20+ occurrences:
|
||||
├─ occurrence_count: 24
|
||||
├─ auto_remediation_success_rate: 0.92
|
||||
├─ Very high confidence
|
||||
└─ Auto-remediation without approval
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## API Usage
|
||||
|
||||
### Create Ticket with Auto-Remediation
|
||||
|
||||
```bash
|
||||
curl -X POST http://localhost:8000/api/v1/tickets \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"ticket_id": "INC-12345",
|
||||
"title": "Service down",
|
||||
"description": "Web service not responding on port 8080",
|
||||
"category": "server",
|
||||
"enable_auto_remediation": true
|
||||
}'
|
||||
```
|
||||
|
||||
**Response:**
|
||||
```json
|
||||
{
|
||||
"ticket_id": "INC-12345",
|
||||
"status": "processing",
|
||||
"auto_remediation_enabled": true,
|
||||
"confidence_score": 0.0,
|
||||
"reliability_score": null
|
||||
}
|
||||
```
|
||||
|
||||
### Check Ticket Status
|
||||
|
||||
```bash
|
||||
curl http://localhost:8000/api/v1/tickets/INC-12345
|
||||
```
|
||||
|
||||
**Response:**
|
||||
```json
|
||||
{
|
||||
"ticket_id": "INC-12345",
|
||||
"status": "resolved",
|
||||
"resolution": "Service was restarted successfully...",
|
||||
"suggested_actions": [
|
||||
{"action": "Restart web service", "system": "prod-web-01"}
|
||||
],
|
||||
"confidence_score": 0.92,
|
||||
"reliability_score": 87.5,
|
||||
"reliability_breakdown": {
|
||||
"overall_score": 87.5,
|
||||
"confidence_level": "high",
|
||||
"breakdown": {...}
|
||||
},
|
||||
"auto_remediation_enabled": true,
|
||||
"auto_remediation_executed": true,
|
||||
"remediation_decision": {
|
||||
"allowed": true,
|
||||
"requires_approval": false,
|
||||
"action_type": "safe_write"
|
||||
},
|
||||
"remediation_results": {
|
||||
"success": true,
|
||||
"executed_actions": [...]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Submit Feedback
|
||||
|
||||
```bash
|
||||
curl -X POST http://localhost:8000/api/v1/feedback \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"ticket_id": "INC-12345",
|
||||
"feedback_type": "positive",
|
||||
"rating": 5,
|
||||
"was_helpful": true,
|
||||
"resolution_accurate": true,
|
||||
"actions_worked": true,
|
||||
"comment": "Perfect resolution, service is back up!"
|
||||
}'
|
||||
```
|
||||
|
||||
### Approve Remediation
|
||||
|
||||
For tickets requiring approval:
|
||||
|
||||
```bash
|
||||
curl -X POST http://localhost:8000/api/v1/tickets/INC-12345/approve-remediation \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"ticket_id": "INC-12345",
|
||||
"approve": true,
|
||||
"approver": "john.doe@company.com",
|
||||
"comment": "Approved for execution"
|
||||
}'
|
||||
```
|
||||
|
||||
### Get Analytics
|
||||
|
||||
```bash
|
||||
# Reliability statistics
|
||||
curl http://localhost:8000/api/v1/stats/reliability?days=30
|
||||
|
||||
# Auto-remediation statistics
|
||||
curl http://localhost:8000/api/v1/stats/auto-remediation?days=30
|
||||
|
||||
# Learned patterns
|
||||
curl http://localhost:8000/api/v1/patterns?category=network&min_occurrences=5
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Configuration
|
||||
|
||||
### Auto-Remediation Policy
|
||||
|
||||
```python
|
||||
policy = AutoRemediationPolicy(
|
||||
name="network-auto-remediation",
|
||||
category="network",
|
||||
|
||||
# Thresholds
|
||||
min_confidence_score=0.85, # 85% AI confidence required
|
||||
min_reliability_score=80.0, # 80% reliability required
|
||||
min_similar_tickets=5, # Need 5+ similar resolved tickets
|
||||
min_positive_feedback_rate=0.8, # 80% positive feedback required
|
||||
|
||||
# Allowed actions
|
||||
allowed_action_types=["safe_write"],
|
||||
allowed_systems=["network"],
|
||||
forbidden_commands=["delete", "format", "shutdown"],
|
||||
|
||||
# Time restrictions
|
||||
allowed_hours_start=22, # 10 PM
|
||||
allowed_hours_end=6, # 6 AM
|
||||
allowed_days=["monday", "tuesday", "wednesday", "thursday", "friday"],
|
||||
|
||||
# Approval
|
||||
requires_approval=True,
|
||||
auto_approve_threshold=90.0, # Auto-approve if reliability ≥ 90%
|
||||
approvers=["admin@company.com"],
|
||||
|
||||
# Safety
|
||||
max_actions_per_hour=10,
|
||||
requires_rollback_plan=True,
|
||||
requires_backup=True,
|
||||
|
||||
# Status
|
||||
enabled=True
|
||||
)
|
||||
```
|
||||
|
||||
### Environment Variables
|
||||
|
||||
```bash
|
||||
# Enable/disable auto-remediation globally
|
||||
AUTO_REMEDIATION_ENABLED=true
|
||||
|
||||
# Global safety settings
|
||||
AUTO_REMEDIATION_MAX_ACTIONS_PER_HOUR=10
|
||||
AUTO_REMEDIATION_REQUIRE_APPROVAL=true
|
||||
AUTO_REMEDIATION_MIN_RELIABILITY=85.0
|
||||
|
||||
# Pattern learning
|
||||
PATTERN_MIN_OCCURRENCES=5
|
||||
PATTERN_MIN_POSITIVE_RATE=0.85
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Monitoring & Analytics
|
||||
|
||||
### Key Metrics
|
||||
|
||||
```python
|
||||
# Reliability metrics
|
||||
- avg_reliability_score: Average across all tickets
|
||||
- avg_confidence_score: Average AI confidence
|
||||
- resolution_rate: % of tickets resolved
|
||||
|
||||
# Auto-remediation metrics
|
||||
- execution_rate: % of enabled tickets that were auto-remediated
|
||||
- success_rate: % of auto-remediation actions that succeeded
|
||||
- approval_rate: % requiring human approval
|
||||
|
||||
# Feedback metrics
|
||||
- positive_feedback_rate: % positive feedback
|
||||
- negative_feedback_rate: % negative feedback
|
||||
- avg_rating: Average star rating (1-5)
|
||||
|
||||
# Pattern metrics
|
||||
- eligible_patterns: # of patterns eligible for auto-remediation
|
||||
- pattern_success_rate: Success rate across all patterns
|
||||
```
|
||||
|
||||
### Grafana Dashboards
|
||||
|
||||
Example metrics:
|
||||
|
||||
```promql
|
||||
# Reliability score trend
|
||||
avg(datacenter_docs_reliability_score) by (category)
|
||||
|
||||
# Auto-remediation success rate
|
||||
rate(datacenter_docs_auto_remediation_success_total[1h]) /
|
||||
rate(datacenter_docs_auto_remediation_attempts_total[1h])
|
||||
|
||||
# Feedback sentiment
|
||||
sum(datacenter_docs_feedback_total) by (type)
|
||||
```
|
||||
|
||||
### Alerts
|
||||
|
||||
```yaml
|
||||
# Low reliability alert
|
||||
- alert: LowReliabilityScore
|
||||
expr: avg(datacenter_docs_reliability_score) < 70
|
||||
for: 1h
|
||||
annotations:
|
||||
summary: "Reliability score below threshold"
|
||||
|
||||
# High failure rate
|
||||
- alert: HighAutoRemediationFailureRate
|
||||
expr: rate(datacenter_docs_auto_remediation_failures_total[1h]) > 0.2
|
||||
for: 15m
|
||||
annotations:
|
||||
summary: "Auto-remediation failure rate > 20%"
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## Best Practices
|
||||
|
||||
### 1. Start Conservative
|
||||
|
||||
- Enable auto-remediation for **low-risk categories** first (e.g., cache clearing)
|
||||
- Set high thresholds initially (reliability ≥ 90%)
|
||||
- Require approvals for first 20-30 occurrences
|
||||
- Monitor closely and adjust based on results
|
||||
|
||||
### 2. Gradual Rollout
|
||||
|
||||
```
|
||||
Week 1-2: Enable for 5% of tickets
|
||||
Week 3-4: Increase to 20% if success rate > 90%
|
||||
Week 5-6: Increase to 50% if success rate > 85%
|
||||
Week 7+: Full rollout with dynamic thresholds
|
||||
```
|
||||
|
||||
### 3. Category-Specific Policies
|
||||
|
||||
Different categories need different thresholds:
|
||||
|
||||
| Category | Min Reliability | Auto-Approve | Reason |
|
||||
|----------|----------------|--------------|--------|
|
||||
| Cache | 75% | 85% | Low risk, frequent |
|
||||
| Network | 85% | 90% | Medium risk |
|
||||
| Storage | 90% | 95% | High risk |
|
||||
| Security | 95% | Never | Critical, always approve |
|
||||
|
||||
### 4. Human in the Loop
|
||||
|
||||
- Always collect feedback, even for successful auto-remediations
|
||||
- Review logs weekly
|
||||
- Adjust thresholds based on feedback trends
|
||||
- Disable patterns with declining success rates
|
||||
|
||||
### 5. Continuous Learning
|
||||
|
||||
- System improves over time through feedback
|
||||
- Patterns with 20+ occurrences and 90%+ success → Very high confidence
|
||||
- Allow system to become more autonomous as reliability proves out
|
||||
- But maintain human oversight for critical operations
|
||||
|
||||
---
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Auto-remediation not executing
|
||||
|
||||
**Check:**
|
||||
1. Is `enable_auto_remediation: true` in ticket?
|
||||
2. Is there an active policy for the category?
|
||||
3. Does confidence/reliability meet thresholds?
|
||||
4. Are safety checks passing?
|
||||
5. Does pattern meet eligibility requirements?
|
||||
|
||||
**Debug:**
|
||||
```bash
|
||||
# Check decision
|
||||
curl http://localhost:8000/api/v1/tickets/TICKET-ID | jq '.remediation_decision'
|
||||
|
||||
# Check logs
|
||||
curl http://localhost:8000/api/v1/tickets/TICKET-ID/remediation-logs
|
||||
```
|
||||
|
||||
### Low reliability scores
|
||||
|
||||
**Causes:**
|
||||
- Insufficient historical data
|
||||
- Negative feedback on category
|
||||
- Low pattern match confidence
|
||||
- Recent failures in category
|
||||
|
||||
**Solutions:**
|
||||
- Collect more feedback
|
||||
- Review and improve resolutions
|
||||
- Wait for more data points
|
||||
- Manually resolve similar tickets successfully
|
||||
|
||||
### Pattern not becoming eligible
|
||||
|
||||
**Requirements not met:**
|
||||
- Need ≥5 occurrences
|
||||
- Need ≥85% positive feedback
|
||||
- Need ≥85% average reliability
|
||||
|
||||
**Action:**
|
||||
- Continue resolving similar tickets
|
||||
- Ensure feedback is being collected
|
||||
- Check pattern stats: `GET /api/v1/patterns`
|
||||
|
||||
---
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
- **Multi-step reasoning**: Complex workflows spanning multiple systems
|
||||
- **Predictive remediation**: Fix issues before they cause incidents
|
||||
- **A/B testing**: Compare different resolution strategies
|
||||
- **Reinforcement learning**: Optimize actions based on outcomes
|
||||
- **Natural language explanations**: Better transparency in decisions
|
||||
- **Cross-system orchestration**: Coordinated actions across infrastructure
|
||||
|
||||
---
|
||||
|
||||
## Summary
|
||||
|
||||
The **Auto-Remediation System** is designed for **safe, gradual automation** of infrastructure issue resolution:
|
||||
|
||||
1. ✅ **Disabled by default** - explicit opt-in per ticket
|
||||
2. ✅ **Multi-factor reliability** - comprehensive confidence calculation
|
||||
3. ✅ **Human feedback loop** - continuous learning and improvement
|
||||
4. ✅ **Pattern recognition** - learns from similar issues
|
||||
5. ✅ **Safety first** - extensive checks, approval workflows, rollback
|
||||
6. ✅ **Progressive automation** - system becomes more autonomous over time
|
||||
7. ✅ **Full observability** - complete audit trail and analytics
|
||||
|
||||
**Start small, monitor closely, scale gradually, and let the system learn.**
|
||||
|
||||
---
|
||||
|
||||
For support: automation-team@company.local
|
||||
Reference in New Issue
Block a user